New Directions For Recurrent Neural Networks

Alex Graves
RNNs Work!

RNNs — especially LSTM / GRU variants — are now ubiquitous in ML research and routinely used for large-scale commercial tasks, including speech and handwriting recognition, machine translation, text-to-speech and many others.

Increasingly trained **end-to-end**: feed the input sequence in, get the desired output sequence out
RNNs Work!

RNNs — especially LSTM / GRU variants — are now ubiquitous in ML research and routinely used for large-scale commercial tasks, including speech and handwriting recognition, machine translation, text-to-speech and many others.

Increasingly trained end-to-end: feed the input sequence in, get the desired output sequence out

So what can’t they do, and what can we do about it?
Extension 1: External Memory

Problem: **RNN memory is stored in the vector of hidden activations**
- Activation memory is ‘fragile’: tends to be overwritten by new information
- No. of weights and hence computational cost grows with memory size (can’t put a whole book in memory)
- ‘Hard-coded’ memory locations make indirection (and hence variables) hard

Solution: **Give the net access to external memory**
- Less fragile: only some memory is ‘touched’ at each step
- Indirection is possible because memory content is independent of location
- Separates *computation* from *memory*

Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et. al. (2014)
Memory Networks, Weston et. al. (2014)
Neural Turing Machines, Graves, Wayne, Danihelka (2014)
Differentiable Neural Computers

Hybrid computing using a neural network with dynamic external memory,
Graves, Wayne et. al., *Nature*, 2016
Basic Read/Write Architecture

The **Controller** is a neural network (recurrent or feedforward)

The **Heads** select portions of the memory and **read** or **write** to them

The **Memory** is a real-valued **matrix**
Memory Access

Most networks with external memory (RNNs with attention, Memory Nets, NTM, DNC…) use some form of content-based memory access: find the memory closest (e.g. cosine similarity) to some key vector emitted by the network, return either the memory contents or an associated value vector.

A universal access mechanism (c.f. associative computers)

But maybe not the most convenient for all tasks: e.g. we search real computers using text strings, directory trees, read/write time, user-defined titles or tags… many more mechanisms to be tried.
Dynamic Memory Allocation

- NTM could only ‘allocate’ memory in contiguous blocks, leading to memory management problems
- DNC defines a differentiable free list tracking the usage of each memory location
- Usage is automatically increased after each write and optionally decreased after each read
- The network can then choose to write to the most free location in memory, rather than searching by content
Memory Allocation Test
Memory Resizing Test
Searching By Time

- We wanted DNC to be able to iterate through memories in chronological order.
- To do this it maintains a **temporal link matrix** L_t whose i,j^{th} element is interpreted as the probability that memory location i was **written to** immediately before location j.
- When reading from memory, DNC can choose to follow these links instead of searching by content.
- Unlike **location-based** access this facilitates two cognitively important functions:
 - **Sequence chunking** (don’t write at every step)
 - **Recoding** (iteratively reprocess a sequence, chunking each time)
London Underground with DNC

a. Read and Write Weightings
b. Read Mode
c. London Underground Map
d. Read Key
e. Location Content
bAbI Results

<table>
<thead>
<tr>
<th>Task</th>
<th>bAbI Best Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSTM (Joint)</td>
</tr>
<tr>
<td>1: 1 supporting fact</td>
<td>24.5</td>
</tr>
<tr>
<td>2: 2 supporting facts</td>
<td>53.2</td>
</tr>
<tr>
<td>3: 3 supporting facts</td>
<td>48.3</td>
</tr>
<tr>
<td>4: 2 argument rels.</td>
<td>0.4</td>
</tr>
<tr>
<td>5: 3 argument rels.</td>
<td>3.5</td>
</tr>
<tr>
<td>6: yes/no questions</td>
<td>11.5</td>
</tr>
<tr>
<td>7: counting</td>
<td>15.0</td>
</tr>
<tr>
<td>8: lists/sets</td>
<td>16.5</td>
</tr>
<tr>
<td>9: simple negation</td>
<td>10.5</td>
</tr>
<tr>
<td>10: indefinite knowl.</td>
<td>22.9</td>
</tr>
<tr>
<td>11: basic coreference</td>
<td>6.1</td>
</tr>
<tr>
<td>12: conjunction</td>
<td>3.8</td>
</tr>
<tr>
<td>13: compound coref.</td>
<td>0.5</td>
</tr>
<tr>
<td>14: time reasoning</td>
<td>55.3</td>
</tr>
<tr>
<td>15: basic deduction</td>
<td>44.7</td>
</tr>
<tr>
<td>16: basic induction</td>
<td>52.6</td>
</tr>
<tr>
<td>17: positional reas.</td>
<td>39.2</td>
</tr>
<tr>
<td>18: size reasoning</td>
<td>4.8</td>
</tr>
<tr>
<td>19: path finding</td>
<td>89.5</td>
</tr>
<tr>
<td>20: agent motiv.</td>
<td>1.3</td>
</tr>
<tr>
<td>Mean Err. (%)</td>
<td>25.2</td>
</tr>
<tr>
<td>Failed (err. > 5%)</td>
<td>15</td>
</tr>
</tbody>
</table>

Ask me anything: dynamic memory networks for natural language processing, Kumar et. al. (2015)

End-to-end memory networks, Sukhbaatar et. al. (2015)
Sparse Memory Access

<table>
<thead>
<tr>
<th></th>
<th>Dense $\mathcal{O}(n)$</th>
<th>Sparse $\mathcal{O}(\log n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content-based addressing</td>
<td>$\mathcal{O}(n^2)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Temporal addressing</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Read</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Erase</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Add</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
</tbody>
</table>

Using a KNN

By restricting reads and writes to 8 (say) locations per step.

Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes, Rae, Hunt et. al. (2016)
Sparse DNC Efficiency

![Graph showing Wall Time vs. Number of memory slots (N) for SDNC and DNC. The X-axis is logarithmic. The Wall Time for SDNC is 4.42ms for N = 10^3 and 2.55s for N = 10^4. The Wall Time for DNC is higher for both values of N.]

![Graph showing Memory vs. Number of memory slots (N) for SDNC and DNC. The Y-axis is logarithmic. The Memory for SDNC is 23MiB for N = 10^3 and 5.5GiB for N = 10^4. The Memory for DNC is higher for both values of N.]
Problem: The number of steps of computation an RNN gets before emitting an output is determined by the length of the input sequence, not the difficulty of the task.

- Do any three positive integers \(a, b, c\) satisfy \(a^n + b^n = c^n\) for any integer \(n\) greater than two?

Solution: Train the network to learn how long to ‘think’ before it ‘acts’

- separate \textit{computation time} from \textit{data time}
RNN Computation Graph
A time penalty acts to reduce the total number of ‘ponder’ steps

Adaptive Computation Time With Recurrent Neural Networks, Graves (2016)
Addition with ACT

Input seq. Target seq.
Addition
Results

![Graph showing sequence error rate over iterations with different time penalties. The graph demonstrates a decrease in error rate as iterations increase, with distinct lines for different time penalties, ranging from 0.0001 to 0.1. The line labeled 'Without ACT' is shown in black.](image-url)
Machine Translation

Dataset: WMT14 test set, English to French

(SMT): 37.0 BLEU

Baseline AttLSTM: 3.4 PPL, 37.5 BLEU

AttLSTM + ACT: 3.1 PPL, 38.3 BLEU

Vinyals, Jozefowicz - unpublished (yet)
Pondering Wikipedia (character level)
ACT for Feedforward Nets

ImageNet high ponder cost examples
Extension 3: Beyond BPTT

Problem: Most RNNs are trained with Backpropagation Through Time (BPTT)

- Memory cost increases with sequence length
- Weight update frequency decreases
- The better RNNs get, the longer the sequences we train them on

Solutions:

1. Truncated backprop (misses long range interactions)
2. RTRL (too expensive)
3. Approximate/local RTRL (promising)
4. **Synthetic Gradients (drastic)**

Training recurrent net-works online without backtracking. Ollivier et. al. (2015)

Long Short-Term Memory. Hochreiter and Schmidhuber (1997)
Decoupled Neural Interfaces

Consider a regular feed-forward network

![Diagram of a feed-forward network with layers and loss](image)

We can create a **model of error gradients** using local information.

The result is Layer 1 can now update **before the execution of Layer 2**.

Decoupled Neural Interfaces using Synthetic Gradients.

Jaderberg et. al. (2016)
Decoupled Neural Interfaces

The **synthetic gradient model** is trained to predict target gradients.

The target gradients could themselves be bootstrapped from other downstream synthetic gradient models.

Analogous to return prediction bootstrapping in RL: ‘Learn a guess from a guess’
Truncated BPTT
RNN learns to predict the gradients returned by its future self.
Recurrent Models

DNI extends the time over which a truncated BPTT model can learn.

+ Convergence speed
+ Data efficiency
MULTI NETWORK

Two RNNs. Tick at different clock speeds. Must communicate to solve task.
Overall Architecture