Skip to yearly menu bar Skip to main content


Poster

Meta-Learning Probabilistic Inference for Prediction

Jonathan Gordon · John Bronskill · Matthias Bauer · Sebastian Nowozin · Richard E Turner

Great Hall BC #55

Keywords: [ probabilistic models ] [ approximate inference ] [ few-shot learning ] [ meta-learning ]


Abstract:

This paper introduces a new framework for data efficient and versatile learning. Specifically: 1) We develop ML-PIP, a general framework for Meta-Learning approximate Probabilistic Inference for Prediction. ML-PIP extends existing probabilistic interpretations of meta-learning to cover a broad class of methods. 2) We introduce \Versa{}, an instance of the framework employing a flexible and versatile amortization network that takes few-shot learning datasets as inputs, with arbitrary numbers of shots, and outputs a distribution over task-specific parameters in a single forward pass. \Versa{} substitutes optimization at test time with forward passes through inference networks, amortizing the cost of inference and relieving the need for second derivatives during training. 3) We evaluate \Versa{} on benchmark datasets where the method sets new state-of-the-art results, and can handle arbitrary number of shots, and for classification, arbitrary numbers of classes at train and test time. The power of the approach is then demonstrated through a challenging few-shot ShapeNet view reconstruction task.

Live content is unavailable. Log in and register to view live content