Algorithms that learn to think on their feet

Hal Daumé III | UMD CS, UMIACS, Linguistics | me@hal3.name | @haldaume3

What is NLP?

> Fundamental goal: deep understanding of text
> Not just string processing or keyword matching
> End systems that we want to build
> Simple: Spelling correction, text categorization, etc.
> Complex: Speech recognition, machine translation, information extraction, dialog interfaces, question answering
> Unknown: human-level comprehension (more than just NLP?)

Why is language hard?

> Ambiguity abounds (some headlines)
> Iraqi Head Seeks Arms
> Teacher Strikes Idle Kids
> Kids Make Nutritious Snacks
> Stolen Painting Found by Tree
> Local HS Dropouts Cut in Half
> Enraged Cow Injures Farmer with Ax
> Hospitals are Sued by 7 Foot Doctors

> Ban on Nude Dancing on Governor's Desk
> Scientists study whales from space
> Why are these funny?
> What does ambiguity imply about the role of learning?

Despite ambiguity, language is predictable
I like my coffee with cream and asparagus
This is crummy weather for San ta Claus
> The brain uses this information!
> Can we use predictability to make decisions before all of the input is observed?
YES!!!

Outline

Simultaneous (machine) interpretation

> Dozens of defendants
> Judges from four nations (three languages)
> Status quo: speak, then translate
> After Nuremberg, simultaneous translations became the norm
Trials
> Long wait \rightarrow bad conversation

Why simultaneous interpretation is hard

> Human languages have vastly different word orders
> About half are OV, the other half are VO
> This comes with a lot more baggage than just verb-final

Running (German/English) Example:

Ich bin mit dem Zug nach Ulm gefahren
I am with the train to Ulm traveled
I (......waiting......) traveled by train to Ulm

Model for interpretation decisions

> We have a set of actions (predict / translate)
> Wait
> Predict clause-verb
> Predict next word
> Commit ("speak")
$>$ In a changing environment (state)
> The words we've seen so far
> Our models' internal predictions
> With a well defined notion of "optimal action" at training time

Example of interpretation trajectory

Observation

1. Mit dem Zug

Verb: gewesen Next: und

Ich bin mit dem Zug nach Ulm gefahren I am with the train to Ulm traveled I (.......waiting......) traveled by train to Ulm

DAgger: Dataset Aggregation
> Collect trajectories from expert in
$>$ Dataset $D_{0}=\left\{\left(s, \pi^{*}(s)\right) \mid s \sim \pi^{*}\right\}$
> Train π_{1} on D_{0}

> If $\mathrm{N}=\mathrm{T} \log \mathrm{T}$,
> $\mathbf{L}\left(\boldsymbol{\pi}_{\mathbf{n}}\right)<\mathbf{T} \boldsymbol{\epsilon}_{\mathbf{N}}+\mathbf{O}(\mathbf{1})$
> Collect new trajectories from π_{I}
> But let the expert steer!
\Rightarrow Dataset $\mathbf{D}_{\mathbf{I}}=\left\{\left(\mathrm{s}, \pi^{*}(\mathrm{~s})\right) \mid \mathrm{s} \sim \pi_{\mathbf{I}}\right\}$
$>$ Train $\boldsymbol{\pi}_{\mathbf{2}}$ on $\mathbf{D}_{\mathbf{0}} \cup \mathbf{D}_{\mathbf{1}}$
> In general:
$>D_{\mathrm{n}}=\left\{\left(\mathrm{s}, \pi^{*}(\mathrm{~s})\right) \mid \mathrm{s} \sim \pi_{\mathrm{n}}\right\}$
$>$ Train π_{n} on $\mathbf{U}_{i<n} \mathbf{D}_{\mathbf{i}}$

Evaluating performance and baselines

Source Sentence

Good Translation
Bad Translation
Gaod Translation
Bood Translation
Badion Translation
Good Translation

Evaluating performance and baselines

Source Sentence

Evaluating performance and baselines

Good Translation
Bad Translation
Bood Translation Translation
Bood Translation
Bad Translation
Good Translation

Evaluating performance and baselines

Source Sentence

Good Translation	
Bad Translation	
Good Translation	
Bad Translation	
Good Translation	
Bad Translation	
Good Translation	
Bad Translation	

Evaluating performance and baselines

Source Sentence

Evaluating performance and baselines

Evaluating performance and baselines

 Source Sentence

Training the policy

> Actions:
$\begin{array}{ll}>\text { Commit } & \text { translate(revealed words) } \\ >\text { Predict (verb/next) } & \text { translate(revealed + predicted) } \\ >\text { Wait } & \text { get_next_words () }\end{array}$
> Delayed feedback: latency BLEU
> Features:
> Output \& confidence of predictors
> Internal translation / language model scores
> Previous decisions made by policy

Evaluating performance

Outline

Humans doing incremental prediction

> Game called "quiz bowl"
> Two teams play each other
> Moderator reads a question
> When a team knows the answer, they buzz in
> If right, they get points; otherwise, rest of the question is read to the other team
> Hundreds of teams in the US alone
> Example...

Quizbowl example

With Leo Szilard, he invented a doubly-eponymous

Quizbowl example

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory

Quizbowl example

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so

Quizbowl example

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients

Quizbowl example

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by

Quizbowl example

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by Bose to describe particles with integer spin. For 10 points, who is this German physicist best known for formulating

Quizbowl example

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by Bose to describe particles with integer spin. For 10 points, who is this German physicist best known for formulating the special and general theories of relativity?

Solving incrementally

> Action: buzz now or wait

> Content Model is constantly generating guesses
> Oracle provides examples where it is correct
> The Policy generalizes to test data
> Features represent our state

Qatar

From Wikipedia, the free encyclopedia
For other places with the same name, see Qatar (disambiguation).
Qatar (w//katarl, /katter/ or wi/ke tar/; ${ }^{[6]}$ Arabic: Qatar [qat'ar]; local the State of Qatar (Arabic: دولة Dawlat Qatar), is a sovereign Arab the small Qatar Peninsula on the northeastern coast of the Arabian Penir to the south, with the rest of its territory surrounded by the Persian Gulf., from the nearby island kingdom of Bahrain. In 2013, Qatar's total populat and 1.5 million expatriates. ${ }^{[8]}$

Evaluation methodology

> Mechanical Turk to collect human data
> 7000 questions were

Big problem:

"this man shot at Aaron Burr" is very different from
"Aaron Burr shot at this man"
> Total of 461 unique users
> Leaderboard to encourage users

Tokens Revealed

Challenge: modeling compositionality

Challenge: modeling compositionality

 invented- Gummibears

double-e with

parts

no

moving

Challenge: modeling compositionality

Challenge: modeling compositionality

invented

parts

Results on question-answering task

Results on question-answering task

Moving to more general frameworks

> Lots of NLP (+al) problems can be cast at test time $\begin{aligned} & \text { as integer linear programs } \\ > & \text { ILPs are usually solved using }\end{aligned}$

Thursday, March 6, 2003
10:30am - 12:00pm
11th Floor Large Conference Room
4676 Admiralty Way, Suite 1001

Branch and bound involves a complex heuristic search Can we learn to perform this search efficiently?

Some intuition

> A good search strategy should:
$>$ find a good incumbent solution early
> identify non-promising nodes before expansion
> "Good" varies depending > DFS should only be used a good feasible solution t
> Best-bound-first search cal nodes, but should not b
> We will learn a heuristic capture this intuition

Training and experiments

> Same algol We achieve less than 1.2 optimality gap
> Four (stan while exploring $0.05 \%, 1.5 \%, 5.1 \%$ and 47%
> Comparis of the nodes explored by Gurobi!
> DFS (baseline)
> Gurobi (thousands of person-hours of effort)
> Measures:
> Optimality Gap, Integrality Gap, and improvement from initial heuristic solution

Dataset	Ours(DAgger training)			DFS			Gurobi		
	OGap	IGap	Impr	OGap	IGap	Impr	OGap	IGap	Impr
MIK	0.23	16.63	4.39	6.74	35.48	0.00	0.17	15.24	0.36
Regions1	0.54	4.53	10.57	3.07	8.48	8.61	2.24	7.20	0.60
Regions2	1.22	6.76	19.36	4.75	11.38	15.12	1.65	7.48	2.15
Hybrid	0.87	20.28	24.46	1.69	23.08	23.53	1.37	23.49	1.58

- Reasoning with incomplete information is useful for speed and modeling
- Imitation learning can help us build such systems
- Plug: even when you can't construct a perfect oracle (see LOLS, ICML 2015)
- Wide range of new, interesting problems to work on!
- How to learn from human interpreters?
- How to learn to compete?
- How to not need BOW in deepNN models?
Thanks! Questions?

