The local

 low-dimensionality of natural images

marginal response

Burt \& Adelson (1982) Field (1987)

marginal response

filter response
Burt \& Adelson (1982)
Field (1987)
Olshausen \& Field (1996) Bell \& Sejnowski (1997)

filter response

filter response

filter response

image

marginal response

filter response

filter response
Ruderman (1994)
image

image
filters
joint responses

image
filters
joint responses

image
filters
joint responses

image
filters
joint responses

nuclear norm
$\|Y\|_{*}=\sum_{i} \sigma_{i}$
L1 norm of singular values

measure of dimensionality for any number of filters
images

images
phase randomized

images

images

phase randomized

images

filters

images

natural images
oriented filters

natural images

filters W

$\left\|y_{r}\right\|_{*}$

image x

filters W

responses $Y=W x$
$E(W)=\sum_{n}\left\|Y_{n}\right\|_{*}$
local lowdimensionality

filters W
image x

responses $Y=W x$
$E(W)=\sum_{n}\left\|Y_{n}\right\|_{*}$
local low-
dimensionality

image x

filters W

responses $Y=W x$
$E(W)=\sum_{\substack{\text { local low- } \\ \text { dimensionality }}}^{\sum_{\substack{\text { information } \\ \text { preservation }}}| | Y_{n}\left\|_{*}+\alpha\right\| \hat{x}-x \|_{2}^{2}}$
$E(W)=\sum_{\substack{\text { local low- } \\ \text { dimensionality }}}^{\sum_{n}\left\|Y_{n}\right\|_{*}+\alpha\|\hat{x}-x\|_{2}^{\text {information }} \text { preservation }}$

image x

filters W

responses $Y=W x$ reconstruction $\hat{x}=W^{T} Y$

$E(W)=\sum_{n}\left\|Y_{n}\right\|_{*}+\alpha\|\hat{x}-x\|_{2}^{2}$
 local lowdimensionality information preservation

image x

filters W

responses $Y=W x$
reconstruction $\hat{x}=W^{T} Y$

$$
E(W)=\sum_{n}\left\|Y_{n}\right\|_{*}+\alpha| | \hat{x}-x| |_{2}^{2}-\beta \left\lvert\,\left\|_{i}-\beta\right\|_{*}^{\text {information }} \begin{aligned}
& \text { local low- } \\
& \text { dimensionality }
\end{aligned} \quad \begin{aligned}
& \text { global high- } \\
& \text { dimensional }
\end{aligned}\right.
$$

image x

filters W
reconstruction $\hat{x}=W^{T} Y$

$$
\begin{array}{lll}
\text { local low- } & \text { information } & \text { global high- } \\
\text { dimensionality } & \text { preservation } & \text { dimensionality }
\end{array}
$$

Fourier magnitudes

$$
\begin{aligned}
& E(W)=\sum_{n}\left\|Y_{n}\right\|_{*}+\alpha\|\hat{x}-x\|_{2}^{2}-\beta\|Y\|_{*} \\
& \text { local low- } \\
& \text { dimensionality } \\
& \text { information } \\
& \text { preservation } \\
& \text { global high- } \\
& \text { dimensionality }
\end{aligned}
$$

natural images

natural images
oriented filters

$$
\begin{gathered}
\phi(x)_{n}=Y_{n}^{T} Y_{n} \\
\text { local covariance }
\end{gathered}
$$

image x

filters W

responses $Y=W x$

$$
\begin{array}{cl}
\phi(x)_{n}=Y_{n}^{T} Y_{n} & \phi(x)=\left[\phi(x)_{n}\right]_{n} \\
\text { local covariance } & \text { covariance map }
\end{array}
$$

image x

responses $Y=W x$
target image

target image

white noise

target image

synthesized image

 from covariance map
24×24 neighborhoods
4×4 subsampling: $0.6 \times$ overcomplete
target image

synthesized image

 from covariance map

+ white noise

$\|\Delta x\|_{2} /\|x\|_{2}=11.1 \%$
synthesized image from variance map
synthesized image from covariance map

$\|\Delta x\|_{2} /\|x\|_{2}=11.1 \%$
synthesized image from variance map

$\|\Delta x\|_{2} /\|x\|_{2}=20.7 \%$
synthesized image from covariance map

$\|\Delta x\|_{2} /\|x\|_{2}=11.1 \%$
target image

histogram of local eigen values
target image

threshold

target image

synthesized image

target image

synthesized image

natural images
oriented filters

Conclusion

responses of oriented, band-pass filters are locally low-dimensional
we optimized a bank of filters for local low-dimensionality
representing natural images as a map of low-dimensional covariances captures the perceptually relevant structure
future directions: stacked covariance maps

Thanks!

