
Word Representations  
via  

Gaussian Embedding
Luke Vilnis 

Andrew McCallum 
University of Massachusetts Amherst



Vector word embeddings

• Low-Level NLP [Turian et al. 2010, Collobert et al. 2011]

• Named Entity Extraction [Passos et al. 2014]


• Machine Translation [Kalchbrenner & Blunsom 2013, Cho et al. 2014]

• Question Answering [Weston et al. 2015]
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Learning Gaussian embeddings
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Related work
• Asymmetric, sparse, distributional [Baroni et al. 2012]

• Dense can be better [Baroni et al. 2014]

• Symmetric, dense [Bengio et al. 2003, Mikolov et al. 2013, many others]

• Bayesian matrix factorization [Salakhutdinov & Mnih 2008]

• (Mixture) density networks [Bishop 1994]

• Gaussian process neural nets [Damianou & Lawrence 2013]
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Synthetic hierarchy
Train data Learned model

KL objective accurately learns all containments
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Entailment

Binary labeled dataset of entailment pairs [Baroni et al. 2012]

adrenaline is-a neurotransmitter

archbishop is-a clergyman


horse is-a mammal

pizza is-a food


aircrew is-not-a playlist

bamboo is-not-a bear


food is-not-a pizza

molecule is-not-a carbohydrate


gathering is-not-a seminar

(+)

(-) reversed

(-) no relation
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Symmetric word similarity
• Word similarity tasks (e.g. WordSim-353)

(money, bank, 8.5) 
(psychology, Freud, 8.21) 

(media, radio, 7.42) 
(drug, abuse, 6.85) 

(Mars, scientist, 5.63) 
(cup, object, 3.69) 

(professor, cucumber, 0.31)

• Evaluate: Spearman’s 𝞺



Symmetric word similarity
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Scientific key-phrase finding

physics

partial differential equations

computational fluid dynamics

Navier Stokes equations
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Scientific key-phrase finding
What makes a good key-phrase? 

- High frequency

- Predictive

Phrases Frequent? Predictive?

conventional wisdom suggests 
pre-defined categories No No

paper describes 
experimental results Yes No

EXPTIME complete 
autocorrelation function No Yes

operational semantics 
regular languages Yes Yes



Scientific key-phrase finding

linear matrix inequality 
satisfiability problem 
encryption schemes 

sparse matrix 
vector spaces 

exploratory study 
theoretical basis 

major contributions 
hot topic

Sample key-phrases from scientific paper abstracts:

frequent, predictive

rare, uninformative



Conclusion
• Introduced Gaussian word embeddings:


- Capture asymmetry 
- Capture broadness of meaning and uncertainty 
- Expressive, dense, distributed representation

- Scalable learning


• 4 billion tokens, 1 core, 8 hours

• Future work: 

- Multi-peaked, unnormalized, non-Gaussian

- Relations, documents, semantic frames

- Non-NLP domains for density representations

Thank you!


