Word Representations via Gaussian Embedding

Luke Vilnis
Andrew McCallum
University of Massachusetts Amherst

Vector word embeddings

```
\bullet teacher
    - chef \bullet astronaut
    - composer - person
```

- Low-Level NLP [Turian et al. 2010, Collobert et al. 2011]
- Named Entity Extraction [Passos et al. 2014]
- Machine Translation [Kalchbrenner \& Blunsom 2013, Cho et al. 2014]
- Question Answering [Weston et al. 2015]
- ..

Vector word embeddings

What's missing?

- Breadth
- Asymmetry

Gaussian word embeddings

Advantages

- Breadth
- Asymmetry

Gaussian word embeddings

Advantages

- Breadth
- Asymmetry
for each word i
v_{i}

Gaussian word embeddings

Advantages

- Breadth
- Asymmetry
for each word i
$\mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right)$

Gaussian word embeddings

Advantages

- Breadth: covariance matrix
- Asymmetry
for each word i
$\mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right)$

Gaussian word embeddings

Advantages

- Breadth: covariance matrix
- Asymmetry
for each word i
$\mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right) \quad \propto-\log \operatorname{det}\left(\Sigma_{i}\right)-\left(\mu_{i}-x\right)^{\top} \Sigma_{i}^{-1}\left(\mu_{i}-x\right)$

Gaussian word embeddings

Advantages

- Breadth: covariance matrix
- Asymmetry
for each word i

$$
\mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right) \propto \propto \underbrace{\log \operatorname{det}\left(\Sigma_{i}\right)}_{\begin{array}{c}
\text { logarithmic penalty on volume } \\
\text { due to normalization }
\end{array}}-\left(\mu_{i}-x\right)^{\top} \Sigma_{i}^{-1}\left(\mu_{i}-x\right)
$$

Gaussian word embeddings

Advantages

- Breadth: covariance matrix
- Asymmetry: KL-divergence
for each word i
$\mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right) \propto<\underbrace{\log \operatorname{det}\left(\Sigma_{i}\right)}_{\begin{array}{c}\text { logarithmic penalty on volume } \\ \text { due to normalization }\end{array}}-\left(\mu_{i}-x\right)^{\top} \Sigma_{i}^{-1}\left(\mu_{i}-x\right)$

Gaussian word embeddings

Advantages

- Breadth: covariance matrix
- Asymmetry: KL-divergence

$$
\begin{aligned}
& K L\left(\mathcal{N}_{i} \| \mathcal{N}_{j}\right)= \\
& \quad \int_{x} \mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right) \log \frac{\mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right)}{\mathcal{N}\left(x ; \mu_{j}, \Sigma_{j}\right)} d x
\end{aligned}
$$

Gaussian word embeddings

Advantages

- Breadth: covariance matrix
- Asymmetry: KL-divergence

$$
K L\left(\mathcal{N}_{i} \| \mathcal{N}_{j}\right)=
$$

$$
\int_{x} \mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right) \log \frac{\mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right)}{\mathcal{N}\left(x ; \mu_{j}, \Sigma_{j}\right)} d x
$$

Gaussian word embeddings

Advantages

- Breadth: covariance matrix
- Asymmetry: KL-divergence
$K L\left(\mathcal{N}_{i} \| \mathcal{N}_{j}\right) \propto$
$-\operatorname{tr}\left(\Sigma_{i}^{-1} \Sigma_{j}\right)-\left(\mu_{i}-\mu_{j}\right)^{\top} \Sigma_{i}^{-1}\left(\mu_{i}-\mu_{j}\right)-\log \frac{\operatorname{det}\left(\Sigma_{i}\right)}{\operatorname{det}\left(\Sigma_{j}\right)}$

Gaussian word embeddings

Advantages

- Breadth: covariance matrix
- Asymmetry: KL-divergence
$K L\left(\mathcal{N}_{i} \| \mathcal{N}_{j}\right) \propto$
$\underbrace{-\operatorname{tr}\left(\Sigma_{i}^{-1} \Sigma_{j}\right)}-\underbrace{\left(\mu_{i}-\mu_{j}\right)^{\top} \Sigma_{i}^{-1}\left(\mu_{i}-\mu_{j}\right)}-\underbrace{\log \frac{\operatorname{det}\left(\Sigma_{i}\right)}{\operatorname{det}\left(\Sigma_{j}\right)}}$
directions of variance should be aligned,
i should be "large" and j "small"
distance between means
is "small" as measured byi
logarithmic penalty on volume due to normalization

Learning vector embeddings

e.g. [Mikolov et al. 2013]
... German musician and composer of the Baroque ...

Learning vector embeddings

e.g. [Mikolov et al. 2013]
... German musician and composer of the Baroque ...

$$
E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\left\langle v_{i}, v_{j}\right\rangle
$$

Learning vector embeddings

e.g. [Mikolov et al. 2013]
... German musician and composer of the Baroque ...
(composer, musician)

$$
E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\left\langle v_{i}, v_{j}\right\rangle
$$

Learning vector embeddings

... German musician and composer of the Baroque ...
(composer, musician)
(composer, $\left.\begin{array}{c}\text { random } \\ \text { dictionary } \\ \text { word }\end{array}\right)$
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\left\langle v_{i}, v_{j}\right\rangle$

Learning vector embeddings

e.g. [Mikolov et al. 2013]
... German musician and composer of the Baroque ...
(composer, musician)
(composer, banana)
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\left\langle v_{i}, v_{j}\right\rangle$

Learning vector embeddings

e.g. [Mikolov et al. 2013]
... German musician and composer of the Baroque ...

E (composer, musician) $>\mathrm{E}($ composer, banana)
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\left\langle v_{i}, v_{j}\right\rangle$

Learning vector embeddings

e.g. [Mikolov et al. 2013]
... German musician and composer of the Baroque ...

E (composer, musician) > E (composer, banana)

$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\sum_{k} v_{i}^{(k)} v_{j}^{(k)}$

Learning vector embeddings

e.g. [Mikolov et al. 2013]
... German musician and composer of the Baroque ...

$\mathrm{E}($ composer, musician) $>\mathrm{E}($ composer, banana)
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\int_{k} v_{i}(k) v_{j}(k) d k$

Learning vector embeddings

e.g. [Mikolov et al. 2013]

... German musician and composer of the Baroque

$E($ composer, musician $)>E($ composer, banana $)$
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\int_{k} v_{i}(k) v_{j}(k) d k$

Learning Gaussian embeddings

... German musician and composer of the Baroque
¿(composer, musician) $>$ ¿(composer, banana)
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)=\int_{k} v_{i}(k) v_{j}(k) d k$

Learning Gaussian embeddings

German musician and composer of the Baroque

$E($ composer, musician $)>E($ composer, banana $)$
$\underset{[\text { PPK. Jebara et al. 2003] }}{E}\left(\operatorname{WOrd}_{i}, \operatorname{word}_{j}\right)=\int_{x} \mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right) \mathcal{N}\left(x ; \mu_{j}, \Sigma_{j}\right) d x$

Learning Gaussian embeddings

... German musician and composer of the Baroque

$E($ composer, musician $)>E($ composer, banana $)$
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)$
[PPK, Jebara et al. 2003]

$$
=\mathcal{N}\left(0 ; \mu_{i}-\mu_{j}, \Sigma_{i}+\Sigma_{j}\right)
$$

Learning Gaussian embeddings

... German musician and composer of the Baroque

$E($ composer, musician $)>E($ composer, banana $)$
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)$ [PPK, Jebara et al. 2003]

$$
\propto-\log \operatorname{det}\left(\Sigma_{i}+\Sigma_{j}\right)-\left(\mu_{i}-\mu_{j}\right)^{\top}\left(\Sigma_{i}+\Sigma_{j}\right)^{-1}\left(\mu_{i}-\mu_{j}\right)
$$

Learning Gaussian embeddings

... German musician and composer of the Baroque

$E($ composer, musician $)>E($ composer, banana $)$
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)$ [PPK, Jebara et al. 2003]

$$
\propto-\log \operatorname{det}\left(\Sigma_{i}+\Sigma_{j}\right)-\left(\mu_{i}-\mu_{j}\right)^{\top}\left(\Sigma_{i}+\Sigma_{j}\right)^{-1}\left(\mu_{i}-\mu_{j}\right)
$$

log-volume of ellipse

Mahalanobis distance between means

Learning Gaussian embeddings

... German musician and composer of the Baroque

$E($ composer, musician $)>E($ composer, banana $)$
$E\left(\operatorname{word}_{i}, \operatorname{word}_{j}\right)$
[PPK, Jebara et al. 2003]

$$
=\mathcal{N}\left(0 ; \mu_{i}-\mu_{j}, \Sigma_{i}+\Sigma_{j}\right)
$$

Learning Gaussian embeddings

... German musician and composer of the Baroque

E(composer, musician) > E(composer, banana)
$\operatorname{LossppK}\left(w, c_{p o s}, c_{n e g}\right)=$
$\max \left(0, m-E_{\mathrm{PPK}}\left(w, c_{p o s}\right)+E_{\mathrm{PPK}}\left(w, c_{n e g}\right)\right)$

Learning Gaussian embeddings

German musician and composer of the Baroque

$E($ composer, musician $)>E($ composer, banana $)$
$\operatorname{Loss}_{\mathrm{KL}}\left(w, c_{p o s}, c_{n e g}\right)=$ $\max \left(0, m+\mathrm{KL}\left(c_{p o s} \| w\right)-\mathrm{KL}\left(c_{n e g} \| w\right)\right)$
(asymmetric supervision)

Related work

- Asymmetric, sparse, distributional [Baroni etal. 2012]
- Dense can be better [Baroni etal. 2014]
- Symmetric, dense [Bengio et al. 2003, mikolov et al. 2013, many others]
- Bayesian matrix factorization [Salakhutdinov \& Mnih 2008]
- (Mixture) density networks [Bishop 1994]
- Gaussian process neural nets [Damianou \& Lawrence 2013]

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Synthetic hierarchy

Train data

Objective

$$
\text { child } \vdash \text { parent }
$$

$\mathrm{KL}\left(v_{\text {child }} \| v_{\text {parent }}\right)$

Synthetic hierarchy

Train data Learned model

KL objective accurately learns all containments

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Entailment

Binary labeled dataset of entailment pairs [Baroni et al. 2012]

$$
\begin{gathered}
\text { adrenaline is-a neurotransmitter } \\
\text { archbishop is-a clergyman } \\
\text { horse is-a mammal } \\
\text { pizza is-a food }
\end{gathered}
$$

Entailment

Binary labeled dataset of entailment pairs [Baroni et al. 2012] adrenaline is-a neurotransmitter archbishop is-a clergyman horse is-a mammal pizza is-a food
aircrew is-not-a playlist bamboo is-not-a bear
(-) no relation

Entailment

Binary labeled dataset of entailment pairs [Baroni et al. 2012] adrenaline is-a neurotransmitter archbishop is-a clergyman
horse is-a mammal pizza is-a food
aircrew is-not-a playlist bamboo is-not-a bear
(-) no relation
food is-not-a pizza
molecule is-not-a carbohydrate (-) reversed gathering is-not-a seminar

Entailment

- Model: diagonal (D) and spherical (S) variances
- Train: ~1b tokens Wikipedia + 3b tokens of newswire
- Evaluate: optimal F1 operating point, average precision

Entailment

- Model: diagonal (D) and spherical (S) variances
- Train: ~1b tokens Wikipedia + 3b tokens of newswire
- Evaluate: optimal F1 operating point, average precision

Model	Test	Similarity	Best F1	AP
Baroni et al. (2012)	E	balAPinc	$\mathbf{7 5 . 1}$	-
Learned (D)	E	KL	79.01	. $\mathbf{. 8 0}$
Learned (S)	E	KL	$\mathbf{7 9 . 3 4}$. .78

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Symmetric word similarity

- Word similarity tasks (e.g. WordSim-353)

(money, bank, 8.5)
(psychology, Freud, 8.21)
(media, radio, 7.42)
(drug, abuse, 6.85)
(Mars, scientist, 5.63)
(cup, object, 3.69)
(professor, cucumber, 0.31)

- Evaluate: Spearman's ρ

Symmetric word similarity

Dataset	Vector SG (100d)	Spherical Gaussian		Diagonal Gaussian	
		LG/50/m/S	LG/50/d/S	LG/50/m/D	LG/50/d/D
SimLex	31.13	32.23	29.84	31.25	30.50
WordSim	59.33	65.49	62.03	62.12	61.00
WordSim-S	70.19	76.15	73.92	74.64	72.79
WordSim-R	54.64	58.96	54.37	54.44	53.36
MEN	70.70	71.31	69.65	71.30	70.18
MC	66.76	70.41	69.17	67.01	68.50
RG	69.38	71.00	74.76	70.41	77.00
YP	35.76	41.50	42.55	36.05	39.30
Rel-122	51.26	53.74	51.09	52.28	53.54
Average	56.57	60.09	$58.60)$	57.72	58.46
	ram	sphere, μ	sphere, $\mu, \boldsymbol{\Sigma}$	diagonal, μ	diagonal, $\mu, \boldsymbol{\Sigma}$

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Experimental results

- Synthetic hierarchies
- Entailment
- Word similarity tasks
- Scientific key phrase finding

Scientific key-phrase finding

Scientific key-phrase finding

What makes a good key-phrase?

- High frequency
- Predictive

Scientific key-phrase finding

What makes a good key-phrase?

- High frequency
- Predictive

Phrases	Frequent?	Predictive?
conventional wisdom suggests pre-defined categories	No	No
paper describes experimental results	Yes	No
EXPTIME complete autocorrelation function	No	Yes
operational semantics regular languages	Yes	Yes

Scientific key-phrase finding

Sample key-phrases from scientific paper abstracts:

frequent, predictive | linear matrix inequality |
| :---: |
| satisfiability problem |
| encryption schemes |
| sparse matrix |
| vector spaces |
| exploratory study |
| theoretical basis |
| major contributions |
| hot topic |

- Introduced Gaussian word embeddings:
- Capture asymmetry
- Capture broadness of meaning and uncertainty
- Expressive, dense, distributed representation
- Scalable learning
- 4 billion tokens, 1 core, 8 hours
- Future work:
- Multi-peaked, unnormalized, non-Gaussian
- Relations, documents, semantic frames
- Non-NLP domains for density representations

