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Linear transform coding

N M

D: distortion, e.g. mean squared error

R : rate, ideally close to Shannon entropy of �
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rate: 0.17 bits/pixel



rate: 0.12 bits/pixel
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coarser quantization: lower rate, higher distortion



rate: 0.32 bits/pixel
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finer quantization: higher rate, lower distortion



�

�̂

�

�̂
� ∈ MG

G−1

signal

space

code

space

RD

6

Linear transform coding

decades of engineering:

improved transforms, non-uniform quantization, inter/intra 
prediction, deblocking, adaptive partitioning, etc.

N M
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Nonlinear transform coding

��, ��: multivariate, parametric nonlinear functions

(if it helps, think of them as neural networks)
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Architecture of transformation

�� = ���
β� + �

� γ�� |�� |2

generalized divisive normalization
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Generalized divisive normalization (GDN)

generalization of:
– sigmoid-type nonlinearities
– local response normalization (LRN)
see our ICLR 2016 paper for details
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Nonlinear transform coding

optimize ��, �� for rate and distortion numerically

L[��� ��� P�] = − [log

2

P�]

� �� �

R
+λ [�(�� �̂)]

� �� �

D
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∂�̂
∂� = 0

∂�̂
∂� = ∞

gradient is zero almost everywhere
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� �̂

differentiable and continuous
stochastic approximation

� �̃+

∆� ∼ �

other approaches:
Theis et al., 2017
Jang et al., 2017
Maddison et al., 2017
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proxy loss:
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Wait! Isn’t this just an autoencoder?

(Yes and no.)
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rate distortion

log prior log likelihoodVariational AE:

Proxy RD:
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Results
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original
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JPEG @ 0.119 bits/px
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JPEG 2000 @ 0.107 bits/px
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proposed @ 0.106 bits/px
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JPEG JPEG 2000

original proposed
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We consistently outperform JPEG 2000

better

be
tte

r
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original
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JPEG @ 0.170 bits/px
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JPEG 2000 @ 0.167 bits/px
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proposed @ 0.167 bits/px
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JPEG JPEG 2000

original proposed
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Thanks!

More images, metrics, and the model parameters:
http://www.cns.nyu.edu/~lcv/iclr2017/

Comparison to compression state-of-the-art (BPG):
come to our poster tomorrow morning!

http://www.cns.nyu.edu/~balle/iclr2017-kodak-rgb/
http://www.cns.nyu.edu/~balle/iclr2017-kodak-rgb/

