Making Neural Programming Architectures Generalize via Recursion

Jonathon Cai, Richard Shin, Dawn Song

University of California, Berkeley

Program Synthesis

Example Applications:

- End-user programming
- Performance optimization of code
- Virtual assistant

Neural Program Synthesis

Neural Program Synthesis

Neural Program Architectures

Neural Program Synthesis Tasks: Copy, Grade-school addition, Sorting, Shortest Path

Challenge 1: Generalization

Challenge 1: Existing Neural Program Architectures Do Not Generalize Well

7

Problem Statement

For program synthesis tasks like addition and sorting:

- What challenges are we trying to address?
 - Generalization to more complex inputs
 - Proof of generalization
- → Which approach will solve these challenges?
- \rightarrow How do we implement the approach?

Our Approach: Introduce Recursion

Learn recursive neural programs

Recursion

Fundamental concept in Computer Science and Math.

Solve whole problem by reducing it to smaller subproblems (reduction rules).

Base cases (smallest subproblems) are easier to reason about.

Our Contributions

For program synthesis tasks like addition and sorting:

- What challenges are we trying to address?
 - Generalization to more complex inputs
 - Proof of generalization
- Which approach will solve these challenges?
 - Recursion in neural programs
- How do we implement the approach?
 - Instantiation: Incorporate recursion into Neural Programmer-Interpreter
 - Training method: As a first step, strong supervision with *explicitly recursive execution traces* to learn a recursive neural program

Outline

Challenges in Neural Program Architectures Overview of Our Approach: Recursion

→ Background: Neural-Programmer Interpreter Learning Recursive Neural Programs Provably Perfect Generalization Experimental Results Conclusion

Neural Program Architectures

Neural Program Synthesis Tasks: Copy, Grade-school addition, Sorting, Shortest Path

Neural Programmer-Interpreter (NPI)

Execution of NPI

Calling a function creates a new NPI controller state (LSTM hidden state).

Execution traces in NPI

The sequence of operations forms an execution trace.

Training NPI with Execution Traces

Execution trace divided into training sequences, according to the caller function.

Simplified Execution Traces

For brevity, we omit details in the trace.

Simplified Execution Traces

For brevity, we omit details in the trace.

NPI Trains on Execution Traces, Not Input-Output Pairs

The training data for each architecture:

Neural Turing Machine Neural GPU Differentiable Neural Computer etc.

Outline

Challenges in Neural Program Architectures Overview of Our Approach: Recursion Background: Neural-Programmer Interpreter

→ Learning Recursive Neural Programs Provably Perfect Generalization Experimental Results Conclusion

Learn recursive neural programs

What is a Recursive NPI Program?

Trace from an example recursive NPI program: 🕿 ADD calls itself

🔁 ADD

- ☎ ADD1] Repeated inside
- ☎ LSHIFT one function call
- 🖀 ADD1
- 🔁 LSHIFT
- 🔁 ADD1
- 🔁 LSHIFT
- •••

Execution trace of non-recursive program (previous work)

Grade-School Addition

From right to left (smallest to largest position):

- 1. Add three values in the column.
- If resulting sum exceeds 10, put a 1 in the next carry position.

		1	1		carry
	1	2	3	4	1st number
+	5	6	7	8	2nd number
	6	9	1	2	output

Grade-School Addition

Scratchpad (environment):

Observation: value at each pointer; in this example, $(4, 8, \emptyset, \emptyset)$

Three functions ADD1: adds 1 column LSHIFT: move to next column CARRY: write carry digit if needed

Schange environment ☎: call function

ADDADD1

Schange environment ☎: call function

ADD
ADD1
WRITE OUT 2

S: change environment ☎: call function

ADD
ADD1
WRITE OUT 2
CARRY
PTR CARRY LEFT

S: change environment ☎: call function

ADD
 ADD1
 WRITE OUT 2
 CARRY
 PTR CARRY LEFT
 WRITE CARRY 1

S: change environment ☎: call function

1 2 3 INP1 TADD1 ♦ WRITE OUT 2 5 8 6 INP2 Sector Secto Second Se 1 CARRY Solution PTR CARRY RIGHT

S: change environment ☎: call function

ADD
 ADD1
 LSHIFT
 PTR INP1 LEFT
 PTR INP2 LEFT
 PTR CARRY LEFT
 PTR OUT LEFT

INP1

INP2

CARRY

Schange environment ☎: call function

ADD ADD1 CLSHIFT

INP2

INP1

CARRY

Schange environment ☎: call function

ADD
ADD1
LSHIFT
ADD1
LSHIFT

INP1 INP2

CARRY

S: change environment ☎: call function

ADD
ADD1
LSHIFT
ADD1
LSHIFT
ADD1
ADD1
LSHIFT
LSHIFT

INP2

INP1

CARRY

S: change environment ☎: call function

ADD
ADD1
LSHIFT
ADD1
LSHIFT
ADD1
LSHIFT
ADD1
LSHIFT
ADD1
LSHIFT
ADD1
LSHIFT

INP1 INP2 CARRY

S: change environment ☎: call function

🔁 ADD

☎ ADD1] Repeated x4 in

☎ LSHIFT one call

🔁 ADD1

🖀 LSHIFT

🔁 ADD1

🔁 LSHIFT

🔁 ADD1

🔁 LSHIFT

INP2

INP1

CARRY

Non-Recursive vs Recursive Grade-School Addition

change environment	Call function
Non-recursive	Recursive
(previous work)	(our work)
🔁 ADD	🔁 ADD
🖀 ADD1	🔁 ADD1
🔁 LSHIFT	🔁 LSHIFT

Non-Recursive vs Recursive **Grade-School Addition**

Change environment	 Call function
Non-recursive	Recursive
(previous work)	(our work)
🔁 ADD	🔁 ADD
🔁 ADD1	🔁 ADD1
🔁 LSHIFT	🔁 LSHIF
🕿 ADD1	🔁 ADD
🔁 LSHIFT	🔁 AD
	🔁 LSF

Non-Recursive vs Recursive **Grade-School Addition**

S: change environment	 Call function
Non-recursive	Recursive
(previous work)	(our work)
🔁 ADD	🔁 ADD
🔁 ADD1	🔁 ADD1
🔁 LSHIFT	🛣 LSHIF
🔁 ADD1	🔁 ADD
🔁 LSHIFT	🔁 AD
🔁 ADD1	🔁 LSF
🔁 LSHIFT	
	2 A

ve rk) D1 HIFT D ADD1 _SHIFT SADD1 **T**LSHIFT

Schange environment ☎: call function

. . .

Schange environment ☎: call function

. . .

Non-Recursive vs Recursive Addition

🖀 ADD

. . .

☎ ADD1] Repeated inside
☎ LSHIFT ∫ one function call

🖀 ADD1

🔁 LSHIFT

🔁 ADD1

🔁 LSHIFT

Non-recursive execution trace (previous work)

Non-Recursive vs Recursive Addition

n = number of input digits

How to Learn a Recursive NPI Program

- In NPI, any function can call any function, including itself (but original NPI didn't explicitly make use of recursive calls)
- To learn a recursive NPI program:
 - No architecture change
 - Only change the training data, instead of the architecture

How to Learn a Recursive NPI Program

Outline

Challenges in Neural Program Architectures Overview of Our Approach: Recursion Background: Neural-Programmer Interpreter Learning Recursive Neural Programs

→ Provably Perfect Generalization Experimental Results Conclusion

Verifying Perfect Generalization

?

Oracle (correct program behavior)

Learned neural program

Verifying Perfect Generalization Observation Sequences

F
 G
 MOVE
 T
 H

Recursion Induces Boundedness

Neural network needs to solve:

Without recursion (previous work)

With recursion (our work)

Recursion Enables Verification

Recursion allows for a *finite* (and therefore tractable) verification set, for certain domains.

Verification sets for addition:

Outline

Challenges in Neural Program Architectures Overview of Our Approach: Recursion Background: Neural-Programmer Interpreter Learning Recursive Neural Programs Provably Perfect Generalization

→ Experimental Results Conclusion

Tasks in Experiments

Experimental Results

- Experimental setup:
 - Recursive and non-recursive NPI program learned for each task using the same training problems.
 - Both evaluated on same (randomly generated) test problems.
- Empirical results:
 - Learned recursive programs are **100% accurate** on the test problems.
 - Non-recursive program accuracy often degrades on the test problems.

Empirical Accuracy: Quicksort

Length of Array	Non-Recursive	Recursive
3	100%	100%
5	100%	100%
7	100%	100%
11	73.3%	100%
15	60%	100%
20	30%	100%
30	3.33%	100%
70	0%	100%

Training set: 4 length-5 arrays

Empirical Accuracy: Other Tasks

	Bubble Sort	
Length	Non-Recursive	Recursive
2	100%	100%
4	10%	100%
20	0%	100%
90	0%	100%
Traini	ing set: 100 length.	2 arrave

Training set. Too length-z arrays

fraining set. a graph with 5 venuces

On grade-school addition, both non-recursive and recursive show 100% empirical accuracy (non-recursive matches Reed et al 2016).

Verification of Perfect Generalization

We successfully verified a learned recursive program for each task via the *oracle matching* procedure.

Outline

Challenges in Neural Program Architectures Overview of Our Approach: Recursion Background: Neural-Programmer Interpreter Learning Recursive Neural Programs Provably Perfect Generalization Experimental Results

→ Conclusion

Importance of Recursion in Neural Program Architectures

• We introduce recursion, for the first time, into neural program architectures, and learn recursive neural programs

- We address two main challenges using recursion:
 - Generalization to more complex inputs
 - Proof of generalization

Learning Recursive Neural Programs

- Our first step instantiation:
 - Architecture: Learn recursive programs in NPI
 - Training method: With explicitly recursive execution traces
- Future work and open questions:
 - Extend to other architectures beyond NPI
 - Learn recursive programs with less supervision
 - Without requiring explicitly recursive training traces
 - Input-output examples instead of execution traces
 - Explore other domains such as perception and control

