
Making Neural Programming Architectures
Generalize via Recursion

Jonathon Cai, Richard Shin, Dawn Song

University of California, Berkeley

1

Example Applications:

● End-user programming
● Performance optimization of code
● Virtual assistant

Program Synthesis

2

● Artificial general intelligence!

Program

Programming
Language

Intent

Program
Synthesizer

Neural Program Synthesis

3

Training
data

452
345

123
234

 357

Input

Output797

612
367

 979

Neural Program Synthesis

Neural Program
Architecture

Learned neural
program

Test input Test output

 120

4

Training
data

452
345

123
234

 357

Input

Output797

612
367

 979

50
70

Neural Program Architectures
Neural Turing Machine
(Graves et al)

NTM (Graves et al, 2014)
Neural Programmer (Neelakantan et al, 2015)
Stack RNN (Joulin et al, 2015)
RL NTM (Zaremba et al, 2015)
NPI (Reed et al, 2016)
Algorithms (Zaremba et al, 2016)
GPU (Kaiser et al, 2016)
DNC (Graves et al, 2016)

Neural Programmer (Neelankatan et al)
Neural Programmer-Interpreter (Reed et al)
Neural GPU (Kaiser et al)

 Stack Recurrent Nets (Joulin et al)
Learning Simple Algorithms from
Examples (Zaremba et al)

Differentiable Neural
Computer (Graves et al)

Neural Program Synthesis Tasks: Copy, Grade-school addition, Sorting, Shortest Path
5

 Nov 2014 May 2015 Dec 2015 May 2016 June 2016 Oct 2016

Reinforcement Learning
Neural Turing Machines
(Zaremba et al)

Challenge 1: Generalization

Training
data

452
345

123
234

 357

Input

Output797

612
367

 979

length = 5

length = 3

6

Neural Program
Architecture

Learned neural
program

Test input Test output

 54321

34216
24320

Challenge 1: Existing Neural Program Architectures Do Not
Generalize Well

NPI (Reed et al, 2016) 7Stack Recurrent Nets (Joulin et al, 2015)

Ac
cu

ra
cy

Ac
cu

ra
cy

Sequence length Sequence length

Trained up to: length 20
Fails from: length 60

Trained up to: length 20
Fails from: length 20

Hypothesis:
Spurious dependencies on
length in the training data

 58536

Challenge 2: No Proof of Generalization

✔
8

Training
data

452
345

123
234

 357

Input

Output797

612
367

 979

length = 3

length = 5

Neural Program
Architecture

Learned neural
program

Test input Test output

34216
24320

Problem Statement

9

For program synthesis tasks like addition and sorting:

● What challenges are we trying to address?
○ Generalization to more complex inputs
○ Proof of generalization

➔ Which approach will solve these challenges?

➔ How do we implement the approach?

Our Approach: Introduce Recursion

Learn recursive neural programs

10

Recursion

Quicksort

Fundamental concept in Computer Science and Math.

Solve whole problem by reducing it to smaller subproblems (reduction rules).

Base cases (smallest subproblems) are easier to reason about.

11

For program synthesis tasks like addition and sorting:

● What challenges are we trying to address?
✓ Generalization to more complex inputs
✓ Proof of generalization

● Which approach will solve these challenges?
○ Recursion in neural programs

For program synthesis tasks like addition and sorting:

● What challenges are we trying to address?
✓ Generalization to more complex inputs
✓ Proof of generalization

● Which approach will solve these challenges?
○ Recursion in neural programs

Our Contributions

12

● How do we implement the approach?
○ Instantiation: Incorporate recursion into Neural Programmer-Interpreter
○ Training method: As a first step, strong supervision with explicitly recursive

execution traces to learn a recursive neural program

Main Contribution!

Outline

➔ Challenges in Neural Program Architectures
➔ Overview of Our Approach: Recursion
➔ Background: Neural-Programmer Interpreter
➔ Learning Recursive Neural Programs
➔ Provably Perfect Generalization
➔ Experimental Results
➔ Conclusion

13

Neural Program Architectures
Neural Turing Machine
(Graves et al)

NTM (Graves et al, 2014)
Neural Programmer (Neelakantan et al, 2015)
Stack RNN (Joulin et al, 2015)
RL NTM (Zaremba et al, 2015)
NPI (Reed et al, 2016)
Algorithms (Zaremba et al, 2016)
GPU (Kaiser et al, 2016)
DNC (Graves et al, 2016)

Neural Programmer (Neelankatan et al)
Neural Programmer-Interpreter (Reed et al)
Neural GPU (Kaiser et al)

 Stack Recurrent Nets (Joulin et al)
Learning Simple Algorithms from
Examples (Zaremba et al)

Differentiable Neural
Computer (Graves et al)

Neural Program Synthesis Tasks: Copy, Grade-school addition, Sorting, Shortest Path
14

 Nov 2014 May 2015 Dec 2015 May 2016 June 2016 Oct 2016

Reinforcement Learning
Neural Turing Machines
(Zaremba et al)

Neural Programmer-Interpreter (NPI)

NPI
Controller

(LSTM)

Caller function
and arguments

Environment observation

Prev. NPI controller state Next NPI controller state

Next operation

3 4

7 8

2

ADD
ADD1
LSHIFT
...

✎ Change environment
☎ Call function
⤴ Return from current function

(4, 8, ∅, 2)
List of function names
 (pre-defined) 15

j0 = 0

Execution of NPI

Calling a function creates a new NPI controller state (LSTM hidden state).

16

✎: change environment ☎: call function

r0 = 0

Fobs1

Gobs3

⤴ return

Fobs4

☎ H☎ G

j1

Gobs2

✎ MOVE

r1

j0 = 0

☎ G

17

✎: change environment ☎: call function

r0 = 0

Fobs1

Gobs2

✎ MOVE

j1

r1

Gobs3

⤴ return

Fobs4

☎ H

Execution traces in NPI

The sequence of operations forms an execution trace.

☎ F
obs1, F → ☎ G

obs2, G → ✎ MOVE
obs3, G → ⤴ return

obs4, F → ☎ H

☎ F
obs1, F → ☎ G

obs2, G → ✎ MOVE
obs3, G → ⤴ return

obs4, F → ☎ H

j0 = 0

☎ G

18

✎: change environment ☎: call function

r0 = 0

Fobs1

Gobs2

✎ MOVE

j1

r1

Gobs3

⤴ return

Fobs4

☎ H
sequence for F

sequence for G

Training NPI with Execution Traces

Execution trace divided into training sequences, according to the caller function.

☎ F
obs1, F → ☎ G

obs2, G → ✎ MOVE
obs3, G → ⤴ return

obs4, F → ☎ H

j0 = 0

☎ G

19

✎: change environment ☎: call function

r0 = 0

Fobs1

Gobs2

✎ MOVE

j1

r1

Gobs3

⤴ return

Fobs4

☎ H
sequence for F

sequence for G

Simplified Execution Traces

For brevity, we omit details in the trace.

☎ F
obs1, F → ☎ G

obs2, G → ✎ MOVE
obs3, G → ⤴ return

obs4, F → ☎ H
☎ F

obs1, F → ☎ G
obs2, G → ✎ MOVE
obs3, G → ⤴ return

obs4, F → ☎ H

j0 = 0

☎ G

20

✎: change environment ☎: call function

r0 = 0

Fobs1

Gobs2

✎ MOVE

j1

r1

Gobs3

⤴ return

Fobs4

☎ H
sequence for F

sequence for G

Simplified Execution Traces

For brevity, we omit details in the trace.

☎ F
☎ G

✎ MOVE
☎ H ☎ F

obs1, F → ☎ G
obs2, G → ✎ MOVE
obs3, G → ⤴ return

obs4, F → ☎ H

☎ ADD
☎ ADD1

✎ WRITE OUT 2
☎ CARRY

...
☎ LSHIFT

...

NPI Trains on Execution Traces,
Not Input-Output Pairs

21

Neural Turing Machine
Neural GPU

Differentiable Neural Computer
etc.

NPI

452
345

123
234

 357

Input

Output 797

612
367

 979

☎ F
☎ G

✎ MOVE
☎ H

The training data for each architecture:

Outline

➔ Challenges in Neural Program Architectures
➔ Overview of Our Approach: Recursion
➔ Background: Neural-Programmer Interpreter
➔ Learning Recursive Neural Programs
➔ Provably Perfect Generalization
➔ Experimental Results
➔ Conclusion

22

Learn recursive neural programs

Incorporate recursion into NPI

23

What is a Recursive NPI Program?

24

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 …

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 …

Execution trace of
non-recursive program

(previous work)

Execution trace of
recursive program

(our work)

Recursive
calls

Trace from an example recursive NPI program: ☎ ADD calls itself

Repeated inside
one function call

Grade-School Addition

1 2 3 4
+

1st number

5 6 7 8 2nd number

carry11

6 9 1 2

From right to left (smallest to largest
position):

1. Add three values in the column.
2. If resulting sum exceeds 10, put

a 1 in the next carry position.

NPI (Reed et al, 2016)

output

25

Observation: value at each pointer;
in this example, (4, 8, ∅, ∅)

Grade-School Addition

1 2 3 4
5 6 7 8INP2

CARRY

INP1

OUT

Scratchpad (environment):

Three functions
 ADD1: adds 1 column
 LSHIFT: move to next column
 CARRY: write carry digit if needed

26
NPI (Reed et al, 2016)

We need to repeatedly
invoke ADD1 and LSHIFT
until we’ve covered every
column.

☎ ADD
 ☎ ADD1

Non-Recursive

Grade-School Addition

1 2 3 4
5 6 7 8 INP2

CARRY

INP1

OUT

27

✎: change environment ☎: call function

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ✎ WRITE OUT 2

1 2 3 4
5 6 7 8

2

INP2

CARRY

INP1

OUT

28

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ✎ WRITE OUT 2
 ☎ CARRY
 ✎ PTR CARRY LEFT

1 2 3 4
5 6 7 8

2

INP2

CARRY

INP1

OUT

29

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ✎ WRITE OUT 2
 ☎ CARRY
 ✎ PTR CARRY LEFT
 ✎ WRITE CARRY 1

1 2 3 4
5 6 7 8

1
2

INP2

CARRY

INP1

OUT

30

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ✎ WRITE OUT 2
 ☎ CARRY
 ✎ PTR CARRY LEFT
 ✎ WRITE CARRY 1
 ✎ PTR CARRY RIGHT

1 2 3 4
5 6 7 8

1
2

INP2

CARRY

INP1

OUT

31

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ✎ PTR INP1 LEFT
 ✎ PTR INP2 LEFT
 ✎ PTR CARRY LEFT
 ✎ PTR OUT LEFT

1 2 3 4
5 6 7 8

1
2

INP2

CARRY

INP1

OUT

32

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT

1 2 3 4
5 6 7 8

1
2

INP2

CARRY

INP1

OUT

33

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT

1 2 3 4
5 6 7 8

1 1
1 2

INP2

CARRY

INP1

OUT

34

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT

1 2 3 4
5 6 7 8

1 1
9 1 2

INP2

CARRY

INP1

OUT

35

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT

1 2 3 4
5 6 7 8

1 1
6 9 1 2

INP2

CARRY

INP1

OUT

36

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT

1 2 3 4
5 6 7 8

1 1
6 9 1 2

INP2

CARRY

INP1

OUT

Repeated x4 in
one call

37

✎: change environment ☎: call function

Non-Recursive

Grade-School Addition

NPI (Reed et al, 2016)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT

1 2 3 4
5 6 7 8

1
2

INP2

CARRY

INP1

OUT

38

✎: change environment ☎: call function

Non-Recursive vs Recursive
Grade-School Addition

☎ ADD
 ☎ ADD1
 ☎ LSHIFT

Non-recursive
(previous work)

Recursive
(our work)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT

1 2 3 4
5 6 7 8

1 1
1 2

INP2

CARRY

INP1

OUT

39

✎: change environment ☎: call function

Non-Recursive vs Recursive
Grade-School Addition

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT

Non-recursive
(previous work)

Recursive
(our work)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT

1 2 3 4
5 6 7 8

1 1
9 1 2

INP2

CARRY

INP1

OUT

40

✎: change environment ☎: call function

Non-Recursive vs Recursive
Grade-School Addition

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT

Non-recursive
(previous work)

Recursive
(our work)

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ...

1 2 3 4
5 6 7 8

1 1
6 9 1 2

INP2

CARRY

INP1

OUT

recursive
calls

41

✎: change environment ☎: call function

Recursive
Grade-School Addition

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ...

1 2 3 4
5 6 7 8

1 1
6 9 1 2

INP2

CARRY

INP1

OUT

recursive
calls

42

✎: change environment ☎: call function

Recursive
Grade-School Addition

Non-Recursive vs Recursive Addition

43

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 …

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 …

Non-recursive
execution trace
(previous work)

Recursive
execution trace

(our work)

recursive
calls

Repeated inside
one function call

Non-Recursive vs Recursive Addition

44

Non-recursive
execution trace
(previous work)

Recursive
execution trace

(our work)

fixed length

☎ ADD1

variable length

☎ LSHIFT
☎ ADD1 ☎ LSHIFT☎ ADD

☎ ADD1☎ LSHIFT☎ ADD

☎ ADD1☎ LSHIFT

1 sequence of size
2n

n sequences with
length 3

⋯

n = number of input digits

✓ Generalization to more complex inputs
✓ Proof of generalization

How to Learn a Recursive NPI Program

LSTM

Current function
and arguments

Environment
observation

Prev. NPI
state

Next NPI
state

Next
action

LSTMPrev. NPI
state

Next NPI
state

Next
action

Previous work With recursion

Current function
and arguments

Environment
observation

Architecture unchanged!

45

● In NPI, any function can call any function, including itself
(but original NPI didn’t explicitly make use of recursive calls)

● To learn a recursive NPI program:
○ No architecture change
○ Only change the training data, instead of the architecture

How to Learn a Recursive NPI Program

46

NPI Architecture

NPI Architecture

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD1
 ☎ LSHIFT
 …

☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 ☎ ADD1
 ☎ LSHIFT
 ☎ ADD
 …

Non-recursive
training trace

Recursive
training trace

Non-recursive
NPI program

Recursive
NPI program

Outline

➔ Challenges in Neural Program Architectures
➔ Overview of Our Approach: Recursion
➔ Background: Neural-Programmer Interpreter
➔ Learning Recursive Neural Programs
➔ Provably Perfect Generalization
➔ Experimental Results
➔ Conclusion

47

Verifying Perfect Generalization

48

Learned neural programOracle
(correct program behavior)

≟

Image by Daniel Hammer from the Noun Project

Observation sequence for F

Observation sequence for G

Observation Sequences

NPI
Core
(LSTM)

Current
function

Environment
observation

Next operation

NPI
Core
(LSTM)

Current
function

Environment
observation

Next operation

NPI
Core
(LSTM)

Current
function

Environment
observation

Next operation

49

Observation sequence

Verifying Perfect Generalization

j0 = 0

☎ G

r0 = 0

F

obs1

G
obs2

✎ MOVE

j1

r1

G
obs3

⤴ return

F

obs4

☎ F
☎ G

✎ MOVE
☎ H☎ H

Creating the Verification Set

50

ADD1

CARRY

All feasible
observation sequences

Verifying Perfect Generalization

other functions...

Creating the Verification Set

51

ADD1

CARRY

Input problems

9 + 0

Verifying Perfect Generalization

other functions...

ADD1

CARRY

other functions...

All feasible
observation sequences

Creating the Verification Set

52

ADD1

CARRY

Input problems

9 + 0

81 + 19

Verifying Perfect Generalization

other functions...

ADD1

CARRY

other functions...

All feasible
observation sequences

Creating the Verification Set

53

ADD1

CARRY

Input problems

9 + 0

81 + 19

61 + 79

Verifying Perfect Generalization

other functions...

ADD1

CARRY

other functions...

All feasible
observation sequences

Creating the Verification Set

54

ADD1

CARRY

Input problems

9 + 0

81 + 19

61 + 79

…

Verifying Perfect Generalization

other functions...

ADD1

CARRY

other functions...

All feasible
observation sequences

ADD1

CARRY

other functions...

Creating the Verification Set

55

ADD1

CARRY

Input problems

…

9 + 0

81 + 19

61 + 79
Verification set

Verifying Perfect Generalization

other functions...

Full coverage

All feasible
observation sequences

Oracle Matching

56
Verification set

9 + 0
81 + 19
61 + 79

...

Learned
neural program

Oracle

✎ PTR CARRY LEFT ✎ WRITE CARRY 1
…
☎ ADD1 ☎ LSHIFT ☎ ADD ⤴ return

...

Output operations
(execution trace)

✎ PTR CARRY LEFT ✎ WRITE CARRY 1
…
☎ ADD1 ☎ LSHIFT ☎ ADD ⤴ return

...

≟

Verifying Perfect Generalization

Arbitrarily many
problems

Recursion Induces Boundedness

57

Base Cases

Recursive
Call

?
Without recursion
(previous work)

With recursion
(our work)

Neural network needs to solve:

Recursion Enables Verification

✔
✔ ∞

cases

Recursion allows for a finite (and therefore tractable) verification set, for certain
domains.

Verification sets for addition:

1+1 = 2

99 + 99 = 198

✔99…99 + 99…99 = …

⋮

✔

✔
~20000
cases

1+1 = 2

99 + 99 = 198

⋮

Without recursion
(previous work)

With recursion
(our work)

Only practical recourse:
empirically verify that
neural network operates
correctly on all inputs.

58

Outline

➔ Challenges in Neural Program Architectures
➔ Overview of Our Approach: Recursion
➔ Background: Neural-Programmer Interpreter
➔ Learning Recursive Neural Programs
➔ Provably Perfect Generalization
➔ Experimental Results
➔ Conclusion

59

Tasks in Experiments

Bubble Sort

Topological Sort

Quicksort

NEW!

NEW!

Grade-School
Addition

60

Experimental Results

● Experimental setup:
○ Recursive and non-recursive NPI program learned for each task using

the same training problems.
○ Both evaluated on same (randomly generated) test problems.

● Empirical results:
○ Learned recursive programs are 100% accurate on the test problems.
○ Non-recursive program accuracy often degrades on the test problems.

61

Empirical Accuracy: Quicksort
Length of Array Non-Recursive Recursive

3 100% 100%

5 100% 100%

7 100% 100%

11 73.3% 100%

15 60% 100%

20 30% 100%

30 3.33% 100%

70 0% 100%

62Training set: 4 length-5 arrays

Empirical Accuracy: Other Tasks

63

Length Non-Recursive Recursive

2 100% 100%

4 10% 100%

20 0% 100%

90 0% 100%

Bubble Sort

Vertices Non-Recursive Recursive

5 6.7% 100%

7 3.3% 100%

8 0% 100%

70 0% 100%

Topological Sort

Training set: 100 length-2 arrays Training set: a graph with 5 vertices

On grade-school addition, both non-recursive and recursive show 100% empirical accuracy
(non-recursive matches Reed et al 2016).

We successfully verified a learned recursive program for each task via the
oracle matching procedure.

Verification of Perfect Generalization

Task Verification Set Size

Addition 20,181

Bubblesort 1

Topological sort 73

Quicksort 1

Bubble Sort

Topological Sort

Quicksort

Grade-School Addition

64

Outline

➔ Challenges in Neural Program Architectures
➔ Overview of Our Approach: Recursion
➔ Background: Neural-Programmer Interpreter
➔ Learning Recursive Neural Programs
➔ Provably Perfect Generalization
➔ Experimental Results
➔ Conclusion

65

Importance of Recursion in Neural Program
Architectures

● We introduce recursion, for the first time,
into neural program architectures,
and learn recursive neural programs

66

Main Contribution!

● We address two main challenges using recursion:
○ Generalization to more complex inputs
○ Proof of generalization

● Proof of generalization is a property of the
learned program which is independent from how
it was learned

Learning Recursive Neural Programs

● Our first step instantiation:

○ Architecture: Learn recursive programs in NPI

○ Training method: With explicitly recursive execution traces

67

● Future work and open questions:

○ Extend to other architectures beyond NPI

○ Learn recursive programs with less supervision

■ Without requiring explicitly recursive training traces

■ Input-output examples instead of execution traces

○ Explore other domains such as perception and control

● Future work and open questions:

○ Extend to other architectures beyond NPI

○ Learn recursive programs with less supervision

■ Without requiring explicitly recursive training traces

■ Input-output examples instead of execution traces

○ Explore other domains such as perception and control

● Our first step instantiation:

○ Architecture: Learn recursive programs in NPI

○ Training method: With explicitly recursive execution traces

● Future work and open questions:

○ Extend to other architectures beyond NPI

○ Learn recursive programs with less supervision

■ Without requiring explicitly recursive training traces

■ Input-output examples instead of execution traces

○ Explore other domains such as perception and control

● Future work and open questions:

○ Extend to other architectures beyond NPI

○ Learn recursive programs with less supervision

■ Without requiring explicitly recursive training traces

■ Input-output examples instead of execution traces

○ Explore other domains such as perception and control

68

THANKS!

