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Model Selection

Underfitting Overfitting



Over-parameterized Models

What are 
the purple dots?

A Water Snake
The Constellation Hydra

https://www.wikiwand.com/en/Hydra_(constellation)
Screenshot from the “Star Walk 2” app.



Deep Learning



Bias — Variance

Deep 
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Randomization Test

Deep Neural Networks easily fit 
random labels.



Random Label Dataset
Dog

Flower

Cat

Flower

···

Dog

Cat

Bus

Bird



arch: MLP
optim: SGD
batch: 128
lr: 0.01
momentum: 0.9
init: …

Randomization Test

arch: Alexnet
optim: SGD
batch: 128
lr: 0.01
momentum: 0.9
init: …

arch: Inception
optim: SGD
batch: 128
lr: 0.1
momentum: 0.9
init: …

dog flower

Data with 
original labels

bus dog

Data with 
random labels

https://www.tensorflow.org/
http://mxnet.io/

Recipes of
Successful 
Models



Randomization Test
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Randomization Test
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Randomization Test

Deep Neural Networks easily fit 
random labels.



Regularizers
⇐ Big Hypothesis Space

⇓ Regularized Models



Regularizers in Deep Learning

• Data augmentation: domain-specific transformations

• Weight decay: l2-regularizer on weights

• Dropout*: randomly mask out responses

* Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. JMLR, 15(1):1929–1958, 2014.

*



Fitting Natural Label with 
Regularizers
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Fitting Random Label with 
Regularizers

Regularizer Model Training Accuracy

Weight decay

Inception 100%

Alexnet Failed to converge

MLP 1x512 99.21%

Crop Augmentation* Inception 99.93%

* We need to tune the hyperparams a bit and run for more epochs for this to converge, see paper for details.

Regularizer Model Training top-5

Dropout
Inception V3

96.15%

Dropout + Weight decay 97.95%



Implicit Regularization



SGD fits Random Labels



SGD fits Random Labels



SGD fits Random Labels



SGD fits Random Labels



SGD fits Random Labels

Optimization is easy for deep learning.



Conclusion

Simple experimental framework for understanding the effective 
capacity of deep learning models

Successful DeepNets are able to shatter the training set

Other formal measures of complexity for the models / 
algorithms / data distributions are needed to precisely explain the 

over-parameterized regime
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 Introduction

CIFAR-10 # train: 50,000

Inception 1,649,402

Alexnet 1,387,786

MLP 1x512 1,209,866

ImageNet # train: 1,200,000

Inception V4 42,681,353

Alexnet 61,100,840

Resnet-{18;152} 11,689,512; 60,192,808

VGG-{11;19} 132,863,336; 143,667,240

 Analysis & Outlook Effective Capacity via Randomization Tests

Our Contributions

1. Randomization test
2. Role of regularization
3. Finite sample expressivity
4. Role of implicit regularization in linear models

Deep neural 
networks easily 

fit random 
labels.

Explicit regularization may improve 
generalization performance, but is 
neither necessary nor by itself sufficient 
for controlling generalization error.

Motivation: # params ≠ complexity

Tall-skinny net     vs.     sin(wt) functions

Effective Complexity: fitting random labels

N02109961
Eskimo dog, Husky

N11923174
Mayweed, dog fennel

N02109961
Tabby, queen

N11923174
Mayweed, dog fennel

N02530052
Whitebait

N02109961
Eskimo dog, Husky

N01324431
Carnivore

N00449796
Hydroplane racing

Model Random Label train accuracy test accuracy

Inception-small
No 100% 85.75%

Yes 100% 9.78%

Alexnet
No 100% 76.07%

Yes 99.82% 9.86%

MLP 3x512
No 100% 52.39%

Yes 100% 10.48%

MLP 1x512
No 100% 50.51%

Yes 99.34% 10.61%

Inception V3
No 100% 80.38% (84.49%)

Yes 99.14% 0.56%

Alexnet (2012) No - 83.60%

arch: Inception
optim: SGD
batch: 128
lr: 0.1
momentum: 0.9
init: …

Recpies of 
successful 
models

Implications: Rademacher 
Complexity & VC-dimension

Role of Regularization (cont)

*top-5 metrics are shown for ImageNet

σ
i
 ∈ {+1, -1} with equal probability

S = { z
1
, …, z

n
 } is the “training” set

No Label Noise
Natural Labels

Full Label Noise
Random Labels

Deep neural networks shatter the 
training set.

Role of Regularization

With or without noise, with or without structure / pattern.

Weight decay, data augmentation, dropout...

Config Random crop Weight decay Train accuracy Test accuracy

Inception on
CIFAR-10

Yes Yes 100% 89.05%

Yes No 100% 89.31%

No Yes 100% 86.03%

No No 100% 85.75%

Config Augmentation Dropout Weight decay Train top-5 Test top-5

Inception on
ImageNet

Yes Yes Yes 99.21% 93.92%

Yes No No 99.17% 90.43%

No No Yes 100% 86.44%

No No No 100%
80.38% 
(84.49%)

Regularizer Model Training top-5

Dropout
Inception V3

96.15%

Dropout + Weight decay 97.95%

Regularizer Model Training Accuracy

Weight decay

Inception 100%

Alexnet Failed to converge

MLP 3x512 100%

MLP 1x512 99.21%

Random crop* Inception 99.93%
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Batch Normalization

CIFAR-10 Natural Labels Random Labels

Early Stopping

Finite Sample Expressivity: Capability to overfit

Linear Models & Implicit Regularization: SGD ⇒ Min-Norm

Conclusions

Theorem. There exists a two-layer neural network with ReLU activations and 2n+d weights that 
can represent any function on a sample of size n in d dimensions.

is lower triangular

has positive diagonal, and is hence invertible

Training
Set

Results in terms of encoding finite training 
samples, in contrast to representing the 
population true hypothesis.

With 2n+d parameters, it can fit arbitrary 
labels on the training set.

Results can be extended to deep neural 
networks with the same O(n+d) 
parameters.

Dataset Preprocessing Test error

MNIST
None 1.2%

Gabor filters 0.6%

CIFAR-10
None 46%

Random ConvNet 17%

Classification by solving 
over-parameterized linear 
regression problems with 
one-hot target vectors, with 
SGD, without regularization.

min
w

 || Xw - y ||2

Theorem (folklore). In the over-parameterized case, SGD on the problem above converges to the 
minimum-norm solution when initialized with zero.

SGD update rule implies solution in span of data points

⇐ the min-norm solution

The “Kernel Trick” can be applied here.

we presented a simple experimental framework for defining and understanding a notion of effective 
capacity of machine learning models. We found

1. The effective capacity of several successful neural network architectures is large enough to 
shatter the training sets.

2. optimization continues to be empirically easy even if the resulting model does not generalize.
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