LEARNING GRAPHICAL STATE TRANSITIONS

Daniel D. Johnson 25 April 2017

Harvey Mudd College

MOTIVATION

Many interesting forms of data consist of *relationships* between *entities*.

Many interesting forms of data consist of *relationships* between *entities*.

This naturally maps to a graphical representation, with *edges* between *nodes*.

GRAPH-STRUCTURED DATA: EXAMPLES

2

• Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)

- Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 - Each node has a state vector, representing its neighborhood

- Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 - Each node has a state vector, representing its neighborhood
 - Updates states of nodes based on states of adjacent nodes, until convergence

- Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 - Each node has a state vector, representing its neighborhood
 - Updates states of nodes based on states of adjacent nodes, until convergence
 - Use states to produce output

- Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 - Each node has a state vector, representing its neighborhood
 - Updates states of nodes based on states of adjacent nodes, until convergence
 - Use states to produce output
- Gated Graph Neural Network (Li et al., 2016)

- Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 - Each node has a state vector, representing its neighborhood
 - Updates states of nodes based on states of adjacent nodes, until convergence
 - Use states to produce output
- Gated Graph Neural Network (Li et al., 2016)
 - Like GNN, but compute states using fixed number of GRU-style updates, train with backpropagation

- Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 - Each node has a state vector, representing its neighborhood
 - Updates states of nodes based on states of adjacent nodes, until convergence
 - Use states to produce output
- Gated Graph Neural Network (Li et al., 2016)
 - Like GNN, but compute states using fixed number of GRU-style updates, train with backpropagation
 - Gated Graph Sequence Neural Networks: extension to produce output sequences

TASK OVERVIEW

Previous work

Previous work

Current work

Mary went to the garden. John journeyed to the office. ... Where is John?

- Design a neural network architecture that can manipulate graphical states
- Use this architecture to solve tasks with graphical internal state and/or graphical output

- Design a neural network architecture that can manipulate graphical states
- Use this architecture to solve tasks with graphical internal state and/or graphical output

Why?

- Using graphs as an internal representation is natural to some tasks, and can help interpret network behavior
- This provides a general framework for learning to output structured data

MODEL

GRAPH REPRESENTATION

- Set of nodes $v \in \mathcal{V}$, each with:
 - a strength s_v (with $0 \le s_v \le 1$)
 - an annotation $\mathbf{x}_v \in \mathbb{R}^N$ where $\sum_{j=1}^N x_{v,j} = 1$
 - a hidden state $\mathbf{h}_v \in \mathbb{R}^D$
- Connectivity matrix $\mathcal{C} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}| \times Y}$
 - $C_{v,v',y}$: strength of directed edge of type y from v to v' (with $0 \le C_{v,v',y} \le 1$)

• Node addition:

create new nodes

Node state update:

update node states based on new input

• Edge update:

add or remove edges based on node states

• Propagation:

update node states based on adjacent node states

Aggregation:

combine node states into a representation vector

NODE ADDITION

Create new nodes conditioned on an input vector

Update node states conditioned on an input vector.

If there are different input vectors for each node type, update each node type separately.

EDGE UPDATE

Add or remove edges conditioned on node states and an input vector.

Exchange information between nodes along edges based on the node states and the edge types.

Compute a graph-level representation vector as a weighted sum of outputs from each node.

GATED GRAPH TRANSFORMER NEURAL NETWORK (GGT-NN)

• Provide correct graph state after each input sentence

- Provide correct graph state after each input sentence
- Train GGT-NN to
 - reproduce these graph states
 - answer query correctly using final graph state

- Provide correct graph state after each input sentence
- Train GGT-NN to
 - reproduce these graph states
 - answer query correctly using final graph state
- During training: substitute correct nodes and edges after each sentence

- Provide correct graph state after each input sentence
- Train GGT-NN to
 - reproduce these graph states
 - answer query correctly using final graph state
- During training: substitute correct nodes and edges after each sentence
- After training: use unmodified network output

EXPERIMENTS

Dataset of 20 simple synthetic question-answering tasks

(Weston et al., 2016)

- 95% accuracy in 19 tasks using 1000 examples
- 100% accuracy in 11 tasks using 1000 examples
 - Including "Basic Induction" and "Pathfinding" tasks
- 95% accuracy in 14 tasks using 500 examples
- 95% accuracy in 10 tasks using 250 examples

Rule 30 Cellular Automaton (Wolfram, 2002)

Arbitrary 2-symbol 4-state Turing machine

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 1:

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 2:

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 3:

1000 iterations

2000 iterations

3000 iterations

7000 iterations

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 4:

1000 iterations

3000 iterations

2000 iterations

7000 iterations

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 5:

2000 iterations

7000 iterations

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 6:

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 7:

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 8:

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 9:

	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 10:

	Accuracy		
	Original Task	Generalization: 20	Generalization: 30
Automaton	100.0%	87.0%	69.5%
Turing	99.9%	90.4%	80.4%

Automaton output at step 11:

Future work will focus on

- Reducing model supervision
- Sparse connectivity optimizations
- Extending node types

- GGT-NN model can construct and manipulate graphical state
- Modular graph transformations can be recombined in different ways
- GGT-NN successfully solves textual bAbI tasks and graphical rule discovery tasks, and is potentially useful for a wide variety of structured data applications

THANK YOU!