Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Nicolas Papernot

joint work with

Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, Kunal Talwar

Nicolas is at Penn State, was an intern in Brain; Ian did part of the work at OpenAI.

Some challenges of learning from private data

Training-data extraction attacks

Fredrikson et al. (2015) Model Inversion Attacks

Membership attacks

Shokri et al. (2016) Membership Inference Attacks against ML Models

Types of adversaries and our threat model

Model querying (black-box adversary)

Shokri et al. (2016) *Membership Inference Attacks against ML Models* Fredrikson et al. (2015) *Model Inversion Attacks*

Model inspection (white-box adversary)

Zhang et al. (2017) Understanding DL requires rethinking generalization

In our work, the threat model assumes:

- Adversary can make a potentially unbounded number of queries
- Adversary has access to model internals

Quantifying privacy



Our design goals

Problem

Preserve privacy of training data when learning classifiers

Differential privacy protection guaranteesIntuitive privacy protection guaranteesGeneric* (independent of learning algorithm)

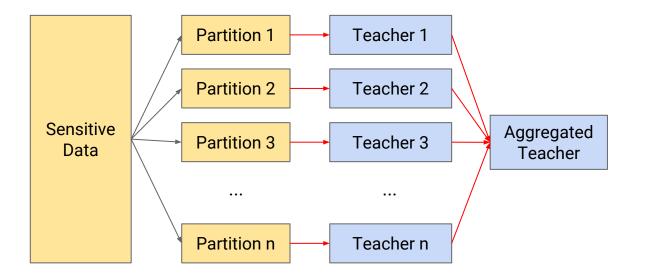
Goals

*This is a key distinction from previous work, such as Pathak et al. (2011) *Privacy preserving probabilistic inference with hidden markov models* Jagannathan et al. (2013) *A semi-supervised learning approach to differential privacy* Shokri et al. (2015) *Privacy-preserving Deep Learning* Abadi et al. (2016) *Deep Learning with Differential Privacy* Hamm et al. (2016) *Learning privately from multiparty data*

The PATE approach:

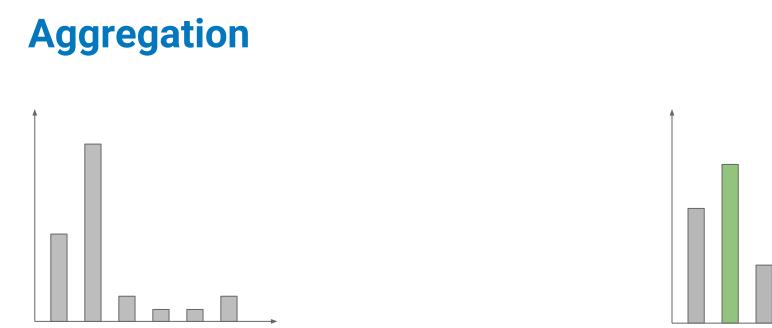
Private Aggregation Teacher **Ensembles**

Teacher ensemble



→ Training

[→] Data flow



Count votes

$$n_j(\vec{x}) = |\{i : i \in 1..n, f_i(\vec{x}) = j\}|$$

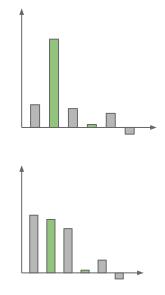
Take maximum

$$f(x) = \arg\max_{j} \left\{ n_j(\vec{x}) \right\}$$

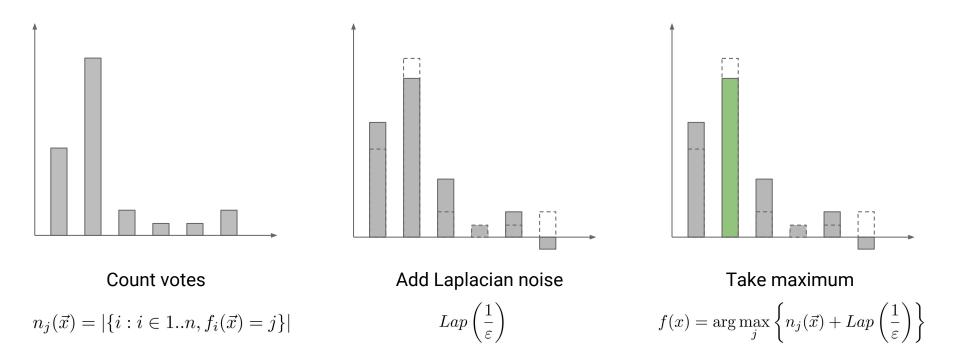
Intuitive privacy analysis

If most teachers agree on the label, it does not depend on specific partitions, so the privacy cost is small.

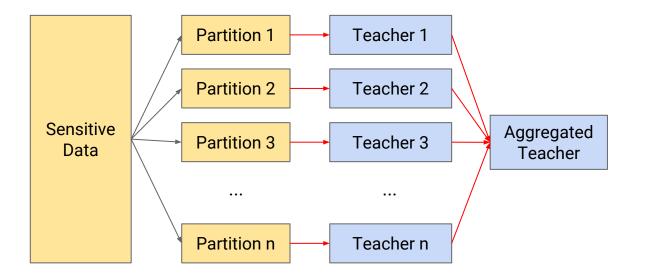
If two classes have close vote counts, the disagreement may reveal private information.



Noisy aggregation



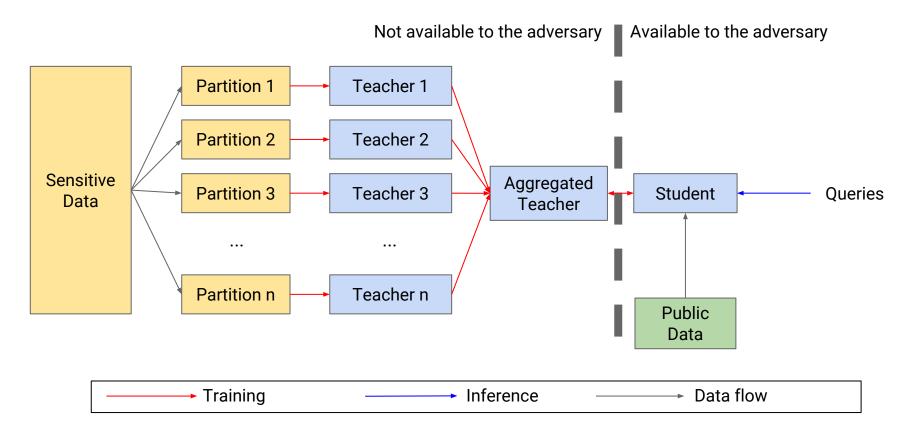
Teacher ensemble



→ Training

[→] Data flow

Student training



Why train an additional "student" model?

The aggregated teacher violates our threat model:

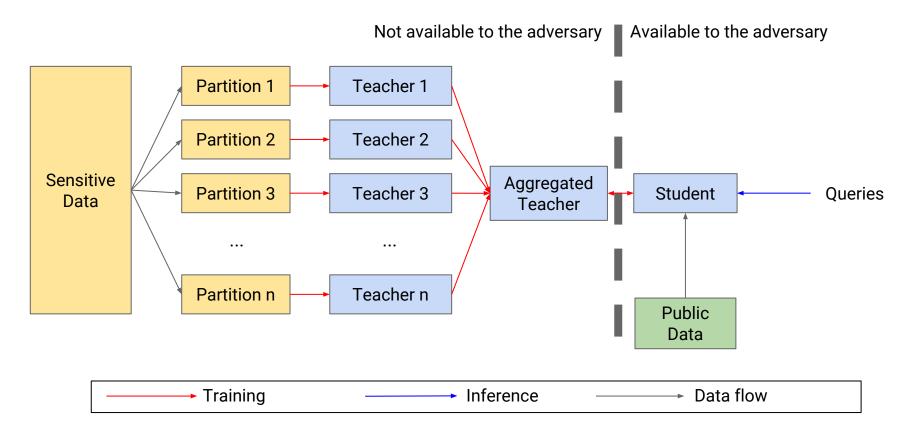
Each prediction increases total privacy loss.

Privacy budgets create a tension between the accuracy and number of predictions.

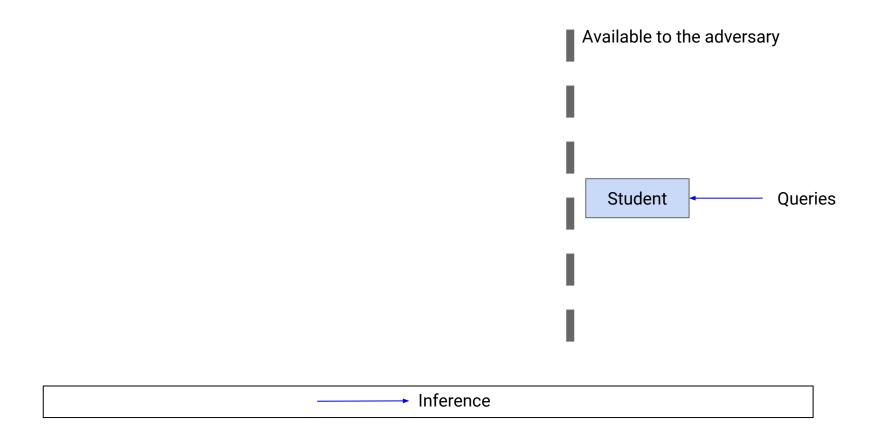
2 Inspection of internals may reveal private data.

Privacy guarantees should hold in the face of white-box adversaries.

Student training



Deployment



Differential privacy analysis

Differential privacy:

A randomized algorithm M satisfies (ε , δ) differential privacy if for all pairs of neighbouring datasets (d,d'), for all subsets S of outputs:

 $Pr[M(d) \in S] \le e^{\varepsilon} Pr[M(d') \in S] + \delta$

Application of the Moments Accountant technique (Abadi et al, 2016)

Strong **quorum** \Rightarrow Small privacy cost

Bound is **data-dependent**: computed using the empirical quorum

PATE-G: the generative variant of PATE

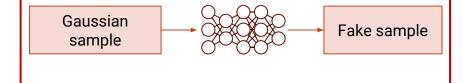
Generative Adversarial Networks (GANs)

2 **competing** models trying to game each other:

Generator:

Input: noise sampled from random distribution

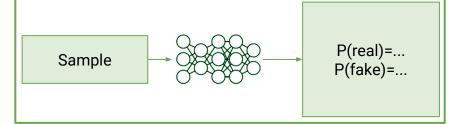
Output: synthetic input close to the expected training distribution



Discriminator

Input: output from generator OR example from real training distribution

Output: in distribution OR fake



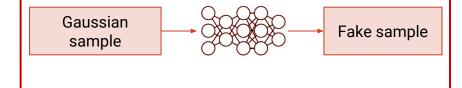
GANs for semi-supervised learning

2 **competing** models trying to game each other:

Generator:

Input: noise sampled from random distribution

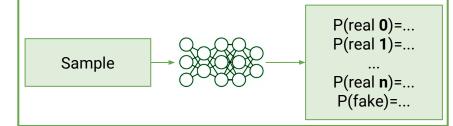
Output: synthetic input close to the expected training distribution



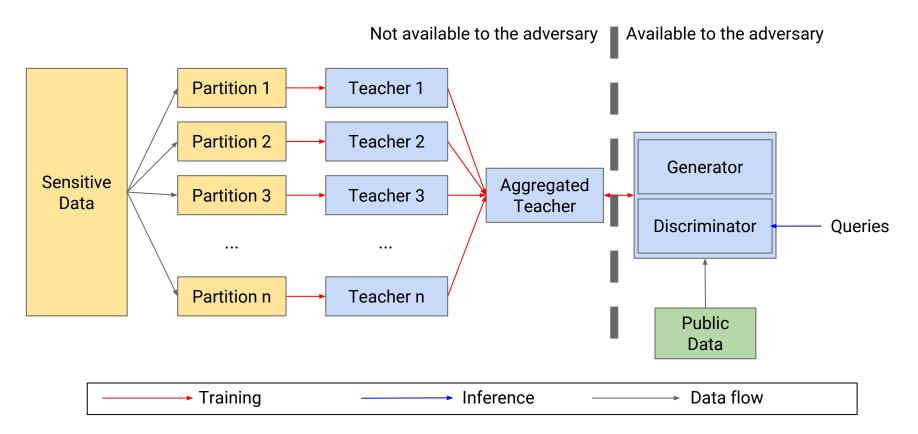
Discriminator

Input: output from generator OR example from real training distribution

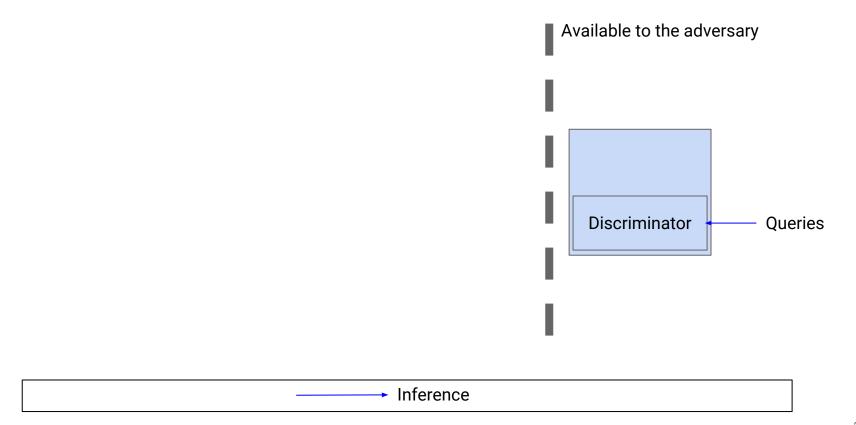
Output: in distribution (which class) OR fake



Student training in PATE-G



Deployment of PATE-G



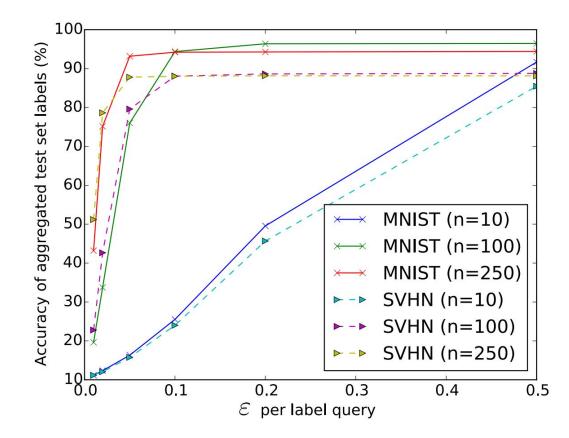
Experimental results

Experimental setup

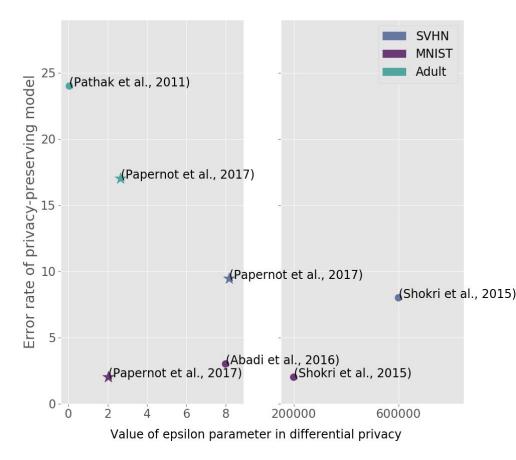
Dataset	Teacher Model	Student Model	Student Public Data	Testing Data
MNIST	2 conv + 1 relu	GANs (6 fc layers)	test[:1000]	test[1000:]
SVHN	2 conv + 2 relu	GANs (7 conv + 2 NIN)	test[:1000]	test[1000:]
UCI Adult	RF (100 trees)	RF (100 trees)	test[:500]	test[500:]
UCI Diabetes	RF (100 trees)	RF (100 trees)	test[:500]	test[500:]

() / TensorFlow / models / tree / master / differential _ privacy / multiple _ teachers

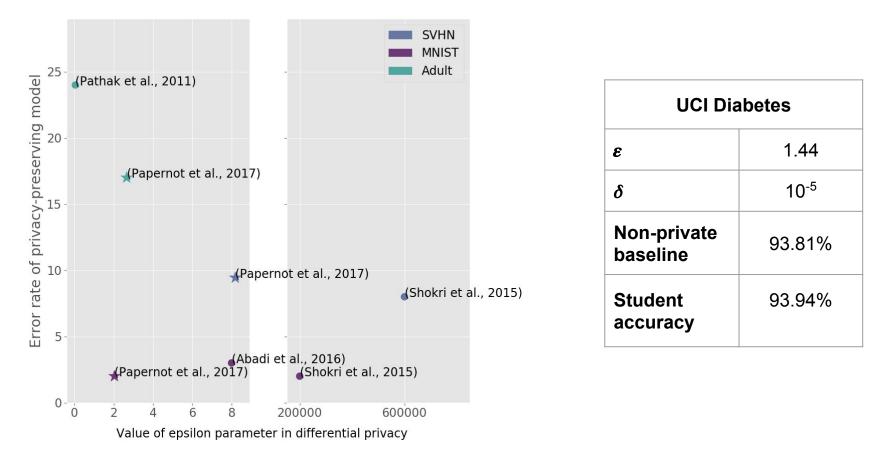
Aggregated teacher accuracy



Trade-off between student accuracy and privacy



Trade-off between student accuracy and privacy



nicolas@papernot.fr

- www.cleverhans.io
- @NicolasPapernot

Come check out our poster C13 (PATE-G *swag* will be distributed while supplies last)

