
Optimization as a Model
for Few-Shot Learning

Sachin Ravi
Princeton University & Twitter

In collaboration with

Hugo Larochelle

A RESEARCH AGENDA
• Deep learning successes have required a lot of labeled training data
‣ collecting and labeling such data requires significant human labor

‣ is that really how we’ll solve AI ?

• Alternative solution : exploit other sources of data that are imperfect but plentiful
‣ unlabeled data (unsupervised learning)

‣ multi-modal data (multimodal learning)

‣ multi-domain data (transfer learning)

2

A RESEARCH AGENDA
• One example of this problem: few-shot learning
‣ Defined as k-shot, N-class classification: k examples for each of N classes

‣ Model needs to generalize after seeing few examples from each class

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set D
meta�train

,
where inside each gray box is a separate dataset that consists of the training set D

train

(left side of
dashed line) and the test set D

test

(right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set D

meta�test

is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in D

meta�train

(similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

c

t

= f

t

� c

t�1

+ i

t

� c̃

t

, (2)

if f
t

= 1, c
t�1

= ✓

t�1

, i

t

= ↵

t

, and c̃

t

= �r
✓t�1Lt

.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or c

t

= ✓

t

, and the
candidate cell state c̃

t

= r
✓t�1Lt

, given how valuable information about the gradient is for opti-
mization. We define parametric forms for i

t

and f

t

so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with i

t

, which corresponds to the learning rate for the updates. We let

i

t

= �

�
W

I

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, i

t�1

⇤
+ b

I

�
,

meaning that the learning rate is a function of the current parameter value ✓

t�1

, the current gradient
r

✓t�1Lt

, the current loss L
t

, and the previous learning rate i

t�1

. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for f
t

, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

f

t

= �

�
W

F

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, f

t�1

⇤
+ b

F

�
.

Additionally, notice that we can also learn the initial value of the cell state c
0

for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

META-LEARNING
• How to do well at few-shot training task?
‣ Training algorithms such as SGD or ADAM prone to overfitting with random initialization

- hard to know what good initialization is

‣ We want to design a training algorithm for each small dataset

- given training set with few examples

- should output parameters for model that generalize well to test set

• Idea: let's learn such a training algorithm, end-to-end
‣ this is known as meta-learning or learning-to-learn

4

META-LEARNING
• Consider a training algorithm
‣ input: training set

‣ output: parameters of model

‣ objective: good performance on test set

• Desire a meta-learning algorithm
‣ input: meta-training set

‣ output: parameters representing a training algorithm

‣ objective: good performance on meta-test set

5

META-LEARNING
6

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set D
meta�train

,
where inside each gray box is a separate dataset that consists of the training set D

train

(left side of
dashed line) and the test set D

test

(right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set D

meta�test

is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in D

meta�train

(similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

c

t

= f

t

� c

t�1

+ i

t

� c̃

t

, (2)

if f
t

= 1, c
t�1

= ✓

t�1

, i

t

= ↵

t

, and c̃

t

= �r
✓t�1Lt

.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or c

t

= ✓

t

, and the
candidate cell state c̃

t

= r
✓t�1Lt

, given how valuable information about the gradient is for opti-
mization. We define parametric forms for i

t

and f

t

so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with i

t

, which corresponds to the learning rate for the updates. We let

i

t

= �

�
W

I

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, i

t�1

⇤
+ b

I

�
,

meaning that the learning rate is a function of the current parameter value ✓

t�1

, the current gradient
r

✓t�1Lt

, the current loss L
t

, and the previous learning rate i

t�1

. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for f
t

, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

f

t

= �

�
W

F

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, f

t�1

⇤
+ b

F

�
.

Additionally, notice that we can also learn the initial value of the cell state c
0

for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

META-LEARNING
7

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set D
meta�train

,
where inside each gray box is a separate dataset that consists of the training set D

train

(left side of
dashed line) and the test set D

test

(right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set D

meta�test

is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in D

meta�train

(similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

c

t

= f

t

� c

t�1

+ i

t

� c̃

t

, (2)

if f
t

= 1, c
t�1

= ✓

t�1

, i

t

= ↵

t

, and c̃

t

= �r
✓t�1Lt

.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or c

t

= ✓

t

, and the
candidate cell state c̃

t

= r
✓t�1Lt

, given how valuable information about the gradient is for opti-
mization. We define parametric forms for i

t

and f

t

so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with i

t

, which corresponds to the learning rate for the updates. We let

i

t

= �

�
W

I

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, i

t�1

⇤
+ b

I

�
,

meaning that the learning rate is a function of the current parameter value ✓

t�1

, the current gradient
r

✓t�1Lt

, the current loss L
t

, and the previous learning rate i

t�1

. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for f
t

, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

f

t

= �

�
W

F

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, f

t�1

⇤
+ b

F

�
.

Additionally, notice that we can also learn the initial value of the cell state c
0

for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

Under review as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set D
meta�train

,
where inside each gray box is a separate dataset that consists of the training set D

train

(left side of
dashed line) and the test set D

test

(right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set D

meta�test

is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in D

meta�train

(similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

c

t

= f

t

� c

t�1

+ i

t

� c̃

t

, (2)

if f
t

= 1, c
t�1

= ✓

t�1

, i

t

= ↵

t

, and c̃

t

= �r
✓t�1Lt

.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or c

t

= ✓

t

, and the
candidate cell state c̃

t

= r
✓t�1Lt

, given how valuable information about the gradient is for opti-
mization. We define parametric forms for i

t

and f

t

so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with i

t

, which corresponds to the learning rate for the updates. We let

i

t

= �

�
W

I

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, i

t�1

⇤
+ b

I

�
,

meaning that the learning rate is a function of the current parameter value ✓

t�1

, the current gradient
r

✓t�1Lt

, the current loss L
t

, and the previous learning rate i

t�1

. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for f
t

, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

f

t

= �

�
W

F

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, f

t�1

⇤
+ b

F

�
.

Additionally, notice that we can also learn the initial value of the cell state c
0

for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that
the meta-learner is training). Learning this initial value lets the meta-learner determine the optimal
initial weights of the learner so that training begins from a beneficial starting point that allows

3

A META-LEARNING MODEL
• How to parametrize training algorithms?
‣ we take inspiration from the gradient descent algorithm:

‣ we parametrize this update similarly to LSTM state updates: 
 

- state is model 's parameters

- state candidate is the negative gradient

- and are LSTM gates:

8

Under review as a conference paper at ICLR 2017

a good point to start training for the set of datasets being considered. This would provide the same
benefits as transfer learning, but with the guarantee that the initialization is an optimal starting point
for fine-tuning.

Previous work has suggested one manner in which to acquire quick knowledge from few examples,
through the idea of meta-learning (Thrun, 1998; Schmidhuber et al., 1997). Meta-learning suggests
framing the learning problem at two levels. The first is quick acquisition of knowledge within each
separate task presented. This process is guided by the second, which involves slower extraction of
information learned across all the tasks.

We present a method here that addresses the weakness of neutral networks trained with gradient-
based optimization on the few-shot learning problem by framing the problem within a meta-learning
setting. We propose an LSTM-based meta-learner optimizer that is trained to optimize a learner
neural network. The meta-learner captures both short-term knowledge within a task and long-term
knowledge common among all the tasks. By using an objective that directly captures an optimization
algorithm’s ability to have good generalization performance given only a set number of updates, the
model is trained to converge to a good solution quickly on each task. Additionally, the formulation
of our meta-learner model allows it to learn a task-common initialization for the learner, which
captures fundamental knowledge shared among all the tasks.

2 TASK DESCRIPTION

We first begin by detailing the meta-learning formulation we use. In the typical machine learning
setting, we are interested in a dataset D and usually split D so that we optimize parameters ✓ on a
training set D

train

and evaluate its generalization on the test set D
test

. In meta-learning, however,
we are dealing with meta-sets D containing multiple regular datasets, where each D 2 D has a split
of D

train

and D

test

.

We consider the k-shot, N -class classification task, where for each dataset D, the training set con-
sists of k labelled examples for each of N classes, meaning that D

train

consists of k ·N examples,
and D

test

has a set number of examples for evaluation.

In meta-learning, we thus have different meta-sets for meta-training, meta-validation, and meta-
testing (D

meta�train

, D
meta�validation

, and D
meta�test

, respectively). On D
meta�train

, we are
interested in training a learning procedure (the meta-learning model) that can take as input one of
its training sets D

train

and produce a model that achieves high average classification performance on
its corresponding test set D

test

. Using D
meta�validation

we can perform hyper-parameter selection
of the meta-learning model and evaluate its generalization performance on D

meta�test

.

For this formulation to correspond to the few-shot learning setting, each training set in datasets
D 2 D will contain few labeled examples (we consider k = 1 or k = 5), that must be used to
generalize to good performance on the corresponding test set.

3 MODEL

We now move to the description of our proposed model for meta-learning.

3.1 MODEL DESCRIPTION

Consider a single dataset D 2 D
meta�train

. Suppose we have a learner neural net model with
parameters ✓ that we want to train on D

train

. The standard optimization algorithms used to train
deep neural networks are some variant of gradient descent, which uses updates of the form

✓

t

= ✓

t�1

� ↵

t

r
✓t�1Lt

, (1)

where ✓

t�1

are the parameters of the learner after t � 1 updates, ↵
t

is the learning rate at time t,
L
t

is the loss optimized by the learner for its t

th update, r
✓t�1Lt

is the gradient of that loss with
respect to parameters ✓

t�1

, and ✓

t

is the updated parameters of the learner.

2

Under review as a conference paper at ICLR 2017

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM

c

t

= f

t

� c

t�1

+ i

t

� c̃

t

, (2)
if f

t

= 1, c
t�1

= ✓

t�1

, i

t

= �↵

t

, and c̃

t

= r
✓t�1Lt

.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or c

t

= ✓

t

, and the
candidate cell state c̃

t

= r
✓t�1Lt

, given how valuable information about the gradient is for opti-
mization. We define parametric forms for i

t

and f

t

so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with i

t

, which corresponds to the learning rate for the updates. We let

i

t

= �

�
W

I

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, i

t�1

⇤
+ b

I

�
,

meaning that the learning rate is a function of the current parameter value ✓

t

, the current gradient
r

✓tLt

, the current loss L
t

, and the previous learning rate i

t�1

. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for f
t

, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

f

t

= �

�
W

F

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, f

t�1

⇤
+ b

F

�
.

Additionally, notice that we can also learn the initial value of the cell state c
0

for the LSTM, treating
it as a parameter of the meta-learning. This corresponds to the initial weights of the learner model
(that the meta-learner is training). Learning this initial value allows the meta-learner to determine
the optimal initial weights of the learner so that training begins from a beneficial starting point, that
allows optimization to proceed rapidly.

3.2 PARAMETER SHARING & PREPROCESSING

Because we want our meta-learner to produce updates for deep neural networks, which consist
of tens of thousands of parameters, to prevent an explosion of meta-learner parameters we need to
employ some sort of parameter sharing. Thus as in Andrychowicz et al. (2016), we share parameters
across the coordinates of the learner gradient. This means each coordinate has it own hidden and
cell state values but the LSTM parameters are the same across all coordinates. This allows us to
use a compact LSTM model and additionally has the nice property that the same update rule is used
for each coordinate, but one that is dependent on the respective history of each coordinate during
optimization. We can easily implement parameter sharing by having the input be a batch of gradient
coordinates and loss inputs (r

✓t,iLt

,L
t

) for each dimension i.

Because the different coordinates of the gradients and the losses can be of very different magnitudes,
we need to be careful in normalizing the values so that the meta-learner is able to use them properly
during training. Thus, we also found that the preprocessing method of Andrychowicz et al. (2016)
worked well when applied to both the dimensions of the gradients and the losses at each time step:

x !
(⇣

log(|x|)
p

, sgn(x)
⌘

if |x| � e

�p

(�1, epx) otherwise

This preprocessing adjusts the scaling of gradients and losses, while also separating the information
about their magnitude and their sign (the later being mostly useful for gradients). We found that the
suggested value of p = 10 in the above formula worked well in our experiments.

3.3 TRAINING

The question now is how do we train the LSTM meta-learner model to be effective at few-shot
learning tasks? As observed in Vinyals et al. (2016), in order to perform well at this task, it is key

3

Under review as a conference paper at ICLR 2017

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM

c

t

= f

t

� c

t�1

+ i

t

� c̃

t

, (2)
if f

t

= 1, c
t�1

= ✓

t�1

, i

t

= �↵

t

, and c̃

t

= r
✓t�1Lt

.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or c

t

= ✓

t

, and the
candidate cell state c̃

t

= r
✓t�1Lt

, given how valuable information about the gradient is for opti-
mization. We define parametric forms for i

t

and f

t

so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with i

t

, which corresponds to the learning rate for the updates. We let

i

t

= �

�
W

I

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, i

t�1

⇤
+ b

I

�
,

meaning that the learning rate is a function of the current parameter value ✓

t

, the current gradient
r

✓tLt

, the current loss L
t

, and the previous learning rate i

t�1

. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for f
t

, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

f

t

= �

�
W

F

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, f

t�1

⇤
+ b

F

�
.

Additionally, notice that we can also learn the initial value of the cell state c
0

for the LSTM, treating
it as a parameter of the meta-learning. This corresponds to the initial weights of the learner model
(that the meta-learner is training). Learning this initial value allows the meta-learner to determine
the optimal initial weights of the learner so that training begins from a beneficial starting point, that
allows optimization to proceed rapidly.

3.2 PARAMETER SHARING & PREPROCESSING

Because we want our meta-learner to produce updates for deep neural networks, which consist
of tens of thousands of parameters, to prevent an explosion of meta-learner parameters we need to
employ some sort of parameter sharing. Thus as in Andrychowicz et al. (2016), we share parameters
across the coordinates of the learner gradient. This means each coordinate has it own hidden and
cell state values but the LSTM parameters are the same across all coordinates. This allows us to
use a compact LSTM model and additionally has the nice property that the same update rule is used
for each coordinate, but one that is dependent on the respective history of each coordinate during
optimization. We can easily implement parameter sharing by having the input be a batch of gradient
coordinates and loss inputs (r

✓t,iLt

,L
t

) for each dimension i.

Because the different coordinates of the gradients and the losses can be of very different magnitudes,
we need to be careful in normalizing the values so that the meta-learner is able to use them properly
during training. Thus, we also found that the preprocessing method of Andrychowicz et al. (2016)
worked well when applied to both the dimensions of the gradients and the losses at each time step:

x !
(⇣

log(|x|)
p

, sgn(x)
⌘

if |x| � e

�p

(�1, epx) otherwise

This preprocessing adjusts the scaling of gradients and losses, while also separating the information
about their magnitude and their sign (the later being mostly useful for gradients). We found that the
suggested value of p = 10 in the above formula worked well in our experiments.

3.3 TRAINING

The question now is how do we train the LSTM meta-learner model to be effective at few-shot
learning tasks? As observed in Vinyals et al. (2016), in order to perform well at this task, it is key

3

Under review as a conference paper at ICLR 2017

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM

c

t

= f

t

� c

t�1

+ i

t

� c̃

t

, (2)
if f

t

= 1, c
t�1

= ✓

t�1

, i

t

= �↵

t

, and c̃

t

= r
✓t�1Lt

.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or c

t

= ✓

t

, and the
candidate cell state c̃

t

= r
✓t�1Lt

, given how valuable information about the gradient is for opti-
mization. We define parametric forms for i

t

and f

t

so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with i

t

, which corresponds to the learning rate for the updates. We let

i

t

= �

�
W

I

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, i

t�1

⇤
+ b

I

�
,

meaning that the learning rate is a function of the current parameter value ✓

t

, the current gradient
r

✓tLt

, the current loss L
t

, and the previous learning rate i

t�1

. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for f
t

, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

f

t

= �

�
W

F

·
⇥
r

✓t�1Lt

,L
t

, ✓

t�1

, f

t�1

⇤
+ b

F

�
.

Additionally, notice that we can also learn the initial value of the cell state c
0

for the LSTM, treating
it as a parameter of the meta-learning. This corresponds to the initial weights of the learner model
(that the meta-learner is training). Learning this initial value allows the meta-learner to determine
the optimal initial weights of the learner so that training begins from a beneficial starting point, that
allows optimization to proceed rapidly.

3.2 PARAMETER SHARING & PREPROCESSING

Because we want our meta-learner to produce updates for deep neural networks, which consist
of tens of thousands of parameters, to prevent an explosion of meta-learner parameters we need to
employ some sort of parameter sharing. Thus as in Andrychowicz et al. (2016), we share parameters
across the coordinates of the learner gradient. This means each coordinate has it own hidden and
cell state values but the LSTM parameters are the same across all coordinates. This allows us to
use a compact LSTM model and additionally has the nice property that the same update rule is used
for each coordinate, but one that is dependent on the respective history of each coordinate during
optimization. We can easily implement parameter sharing by having the input be a batch of gradient
coordinates and loss inputs (r

✓t,iLt

,L
t

) for each dimension i.

Because the different coordinates of the gradients and the losses can be of very different magnitudes,
we need to be careful in normalizing the values so that the meta-learner is able to use them properly
during training. Thus, we also found that the preprocessing method of Andrychowicz et al. (2016)
worked well when applied to both the dimensions of the gradients and the losses at each time step:

x !
(⇣

log(|x|)
p

, sgn(x)
⌘

if |x| � e

�p

(�1, epx) otherwise

This preprocessing adjusts the scaling of gradients and losses, while also separating the information
about their magnitude and their sign (the later being mostly useful for gradients). We found that the
suggested value of p = 10 in the above formula worked well in our experiments.

3.3 TRAINING

The question now is how do we train the LSTM meta-learner model to be effective at few-shot
learning tasks? As observed in Vinyals et al. (2016), in order to perform well at this task, it is key

3

META-LEARNING UPDATES
9

Under review as a conference paper at ICLR 2017

Figure 1: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set D

train

and test set D
test

. Each (X
i

,Y
i

) is the i

th batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use r

t

as
a shorthand for r

✓t�1Lt

.

to have training conditions match those of test time. During evaluation of the meta-learning, for
each dataset D = (D

train

, D

test

) 2 D
meta�test

, a good meta-learner model will, given a series of
learner gradients and losses on the training set D

train

, suggest a series of updates for the learner
model that trains it towards good performance on the test set D

test

.

Thus to match test time, when considering each dataset D 2 D
meta�train

, the training objective we
use is the loss L

test

of the final learner model on D’s test set D
test

. While iterating over the examples
in D’s training set D

train

, at each time step t the LSTM meta-learner receives (r
✓t�1Lt

,L
t

) from
the learner and proposes the new set of parameters ✓

t

. The process repeats for T steps, after which
the learner and its final parameters are evaluated on the test set to produce the loss that is then used
to train the meta-learner. The training algorithm is described in Algorithm 1 and the corresponding
computational graph is shown in Figure 1.

3.3.1 GRADIENT INDEPENDENCE ASSUMPTION

Notice that our formulation would imply that the losses L
t

and gradients r
✓t�1Lt

of the learner are
dependent on the parameters of the meta-learner. Gradients on the meta-learner’s parameters should
normally take this dependency into account. However, as discussed by Andrychowicz et al. (2016),
this complicates the computation of the meta-learner’s gradients. Thus, following Andrychowicz
et al. (2016), we make the simplifying assumption that these contributions to the gradients aren’t
important and can be ignored, which allows us to avoid taking second derivatives, a considerably
expensive operation. We were still able to train the meta-learner effectively in spite of this simplify-
ing assumption.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

4

(LSTM)

META-LEARNING UPDATES
10

Under review as a conference paper at ICLR 2017

Figure 1: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set D

train

and test set D
test

. Each (X
i

,Y
i

) is the i

th batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use r

t

as
a shorthand for r

✓t�1Lt

.

to have training conditions match those of test time. During evaluation of the meta-learning, for
each dataset D = (D

train

, D

test

) 2 D
meta�test

, a good meta-learner model will, given a series of
learner gradients and losses on the training set D

train

, suggest a series of updates for the learner
model that trains it towards good performance on the test set D

test

.

Thus to match test time, when considering each dataset D 2 D
meta�train

, the training objective we
use is the loss L

test

of the final learner model on D’s test set D
test

. While iterating over the examples
in D’s training set D

train

, at each time step t the LSTM meta-learner receives (r
✓t�1Lt

,L
t

) from
the learner and proposes the new set of parameters ✓

t

. The process repeats for T steps, after which
the learner and its final parameters are evaluated on the test set to produce the loss that is then used
to train the meta-learner. The training algorithm is described in Algorithm 1 and the corresponding
computational graph is shown in Figure 1.

3.3.1 GRADIENT INDEPENDENCE ASSUMPTION

Notice that our formulation would imply that the losses L
t

and gradients r
✓t�1Lt

of the learner are
dependent on the parameters of the meta-learner. Gradients on the meta-learner’s parameters should
normally take this dependency into account. However, as discussed by Andrychowicz et al. (2016),
this complicates the computation of the meta-learner’s gradients. Thus, following Andrychowicz
et al. (2016), we make the simplifying assumption that these contributions to the gradients aren’t
important and can be ignored, which allows us to avoid taking second derivatives, a considerably
expensive operation. We were still able to train the meta-learner effectively in spite of this simplify-
ing assumption.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

4

(LSTM)

PSEUDOCODE
11

Under review as a conference paper at ICLR 2017

Algorithm 1 Train Meta-Learner
Input: Meta-training set D

meta�train

, Learner M with parameters ✓, Meta-Learner R with
parameters ⇥.

1: ⇥
0

 random initialization
2:
3: for d = 1, n do
4: D

train

, D

test

 random dataset from D
meta�train

5: ✓

0

 c

0

. Intialize learner parameters
6:
7: for t = 1, T do
8: X

t

,Y
t

 random batch from D

train

9: L
t

 L(M(X
t

; ✓
t�1

),Y
t

) . Get loss of learner on train batch
10: c

t

 R((r
✓t�1Lt

,L
t

);⇥
d�1

) . Get output of meta-learner using Equation 2
11: ✓

t

 c

t

. Update learner parameters
12: end for
13:
14: X,Y D

test

15: L
test

 L(M(X; ✓
T

),Y) . Get loss of learner on test batch
16: Update ⇥

d

using r
⇥d�1Ltest

. Update meta-learner parameters
17:
18: end for

3.4 BATCH NORMALIZATION

Batch Normalization (Ioffe & Szegedy, 2015) is a recently proposed method to stabilize and thus
speed up learning of deep neural networks by reducing internal covariate shift within the learner’s
hidden layers. This reduction is achieved by normalizing each layer’s pre-activation, by subtract-
ing by the mean and dividing by the standard deviation. During training, the mean and standard
deviation are estimated using the current batch being trained on, whereas during evaluation a run-
ning average of both statistics calculated on the training set is used. We need to be careful with
batch normalization for the learner network in the meta-learning setting, because we do not want to
collect mean and standard deviation statistics during meta-testing in a way that allows information
to leak between different datasets being considered. One easy way to prevent this issue is to not
collect statistics at all during the meta-testing phase, but just use our running averages from meta-
training. This, however, has a bad impact on performance, because we have changed meta-training
and meta-testing conditions, causing the meta-learner to learn a method of optimization that relies
on batch statistics which it now does not have at meta-testing time. In order to keep the two phases
as similar as possible, we found that a better strategy was to collect statistics for each dataset D 2 D
during D

meta�test

, but then erase the running statistics when we consider the next dataset. Thus,
during meta-training, we use batch statistics for both the training and testing set whereas during
meta-testing, we use batch statistics for the training set (and to compute our running averages) but
then use the running averages during testing. This does not cause any information to leak between
different datasets, but also allows the meta-learner to be trained on conditions that are matched be-
tween training and testing. Lastly, because we are doing very few training steps, we computed the
running averages so that higher preference is given to the later values.

4 RELATED WORK

While this work falls within the broad literature of transfer learning in general, we focus here on
positioning it relative to previous work on meta-learning and few-shot learning.

4.1 META-LEARNING

Meta-learning has a long history, but has grown to prominence recently as many have advocated
for it as a key to achieving human-level intelligence in the future (Lake et al., 2016). The ability
to learn at two levels (learning within each task presented, while accumulating knowledge about

5

TO SUM UP
• We use our meta-learning LSTM to model parameter dynamics during training
‣ LSTM parameters are shared across 's parameters (i.e. treated like a large minibatch)

‣ learns , which is like learning 's initialization

• Inputs to meta-learning LSTM are the loss and gradient of learner
‣ we use the preprocessing proposed by Andrychowicz et al. (2016)

• It is trained to produce parameters that have low loss on the corresponding test set
‣ possible thanks to backprop (though we ignore gradients through the inputs of the LSTM)

• Model uses batch normalization
‣ we are careful to avoid “leakage” between and within meta-sets

12

RELATED WORK
• Learning to learn using gradient descent (2001)  

Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell

‣ LSTM-based meta-learner that isn’t using 's gradients and was applied to synthetic learning problems

• Gradient-based hyperparameter optimization through reversible learning (2015) 
Dougal Maclaurin, David Duvenaud, and Ryan P Adams

‣ learns the learning rates of each time-step of minibatch SGD

• Learning to learn by gradient descent by gradient descent (2016) 
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, and Nando de Freitas

‣ LSTM outputs the update, instead of using its cell state explicitly for that

• Matching networks for one shot learning (2016)  
Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra

‣ learns a metric that generalizes well to new dataset with meta-learning

13

EXPERIMENT
• Mini-ImageNet
‣ random subset of 100 classes (64 meta-training, 16 meta-validation, 20 meta-testing)

‣ random sets are generated by randomly picking 5 classes from class subset

‣ model is a small 4-layer CNN; meta-learner LSTM has 2 layers

14

Under review as a conference paper at ICLR 2017

Model 5-class
1-shot 5-shot

Baseline-finetune 28.86± 0.54% 49.79± 0.79%
Baseline-nearest-neighbor 41.08± 0.70% 51.04± 0.65%

Matching Network 43.40± 0.78% 51.09± 0.71%
Matching Network FCE 43.56± 0.84% 55.31± 0.73%

Meta-Learner LSTM (OURS) 43.44± 0.77% 60.60± 0.71%

Table 1: Average classification accuracies on Mini-ImageNet with 95% confidence intervals.
Marked in bold are the best results for each scenario, as well as other results with an overlapping
confidence interval.

5 classes. We use 15 examples per class for evaluation in each test set. We compare against two
baselines and a recent metric-learning technique, Matching Networks (Vinyals et al., 2016), which
has achieved state-of-the-art results in few-shot learning. The results are shown in Table 1.

The first baseline we use is a nearest-neighbor baseline (Baseline-nearest-neighbor), where we first
train a network to classify between all the classes jointly in the original meta-training set. At meta-
test time, for each dataset D, we embed all the items in the training set using our trained network
and then use nearest-neighbor matching among the embedded training examples to classify each test
example. The second baseline we use (Baseline-finetune) represents a coarser version of our meta-
learner model. As in the first baseline, we start by training a network to classify jointly between all
classes in the meta-training set. We then use the meta-validation set to search over SGD hyperpa-
rameters, where each training set is used to fine-tune the pre-trained network before evaluating on
the test set. We use a fixed number of updates for fine tuning and search over the learning rate and
learning rate decay used during the course of these updates.

For Matching Networks, we implemented our own version of both the basic and the fully-conditional
embedding (FCE) versions. In the basic version, a convolutional network is trained to learn indepen-
dent embeddings for examples in the training and test set. In the FCE version, a bidirectional-LSTM
is used to learn an embedding for the training set such that each training example’s embedding is
also a function of all the other training examples. Additionally, an attention-LSTM is used so that
a test example embedding is also a function of all the embeddings of the training set. We do not
consider fine-tuning the network using the train set during meta-testing to improve performance as
mentioned in Vinyals et al. (2016), but do note that our meta-learner could also be fine-tuned using
this data. Note that to remain consistent with Vinyals et al. (2016), our baseline and matching net
convolutional networks have 4 layers each with 64 filters. We also added dropout to each convolu-
tional block in matching nets to prevent overfitting.

For our meta-learner, we train different models for the 1-shot and 5-shot tasks, that make 12 and
5 updates, respectively. We noticed that better performance for each task was attained if the meta-
learner is explicitly trained to do the set number of updates during meta-training that will be used
during meta-testing.

We attain results that are much better than the baselines discussed and competitive with Matching
Networks. For 5-shot, we are able to do much better than Matching Networks, whereas for 1-shot,
the confidence interval for our performance intersects the interval for Matching Networks. Again,
we note that the numbers do not match the ones provided by Vinyals et al. (2016) simply because we
created our version of the dataset and implemented our own versions of their model. It is interesting
to note that the fine-tuned baseline is worse than the nearest-neighbor baseline. Because we are
not regularizing the model, with very few updates the fine-tuning model overfits, especially in the
1-shot case. This propensity to overfit speaks to the benefit of training the initialization of the model
end-to-end as is done in the meta-learning LSTM.

5.2 VISUALIZATION OF META-LEARNER

We also visualize the optimization strategy learned by the meta-learner, in Figure 2. We can look
at the i

t

and f

t

gate values in Equation 2 at each update step, to try to get an understanding of how

7

EXPERIMENT
• Learned input gates

15

1-shot learning

Under review as a conference paper at ICLR 2017

(a) Forget gate values for 1-shot meta-learner
(b) Input gate values for 1-shot meta-learner

(c) Forget gate values for 5-shot meta-learner (d) Input gate values for 5-shot meta-learner

Figure 2: Visualization of the input and forget values output by the meta-learner during the course
of its updates. Layers 1 � 4 represent the values for a randomly selected parameter from the 4
convolutional layers and layer 5 represents the values for a random parameter from fully-connected
layer. The different curves represent training steps on different datasets.

the meta-learner updates the learner during training. We visualize the gate values while training
on different datasets D

train

, to observe whether there are variations between training sets. We
consider both 1-shot and 5-shot classification settings, where the meta-learner is making 10 and 5
updates, respectively. For the forget gate values for both tasks, the meta-learner seems to adopt a
simple weight decay strategy that seems consistent across different layers. The input gate values
are harder to interpret to glean the meta-learner’s strategy. However, there seems to a be a lot of
variability between different datasets, indicating that the meta-learner isn’t simply learning a fixed
optimization strategy. Additionally, there seem to be differences between the two tasks, suggesting
that the meta-learner has adopted different methods to deal with the different conditions of each
setting.

6 CONCLUSION

We described an LSTM-based model for meta-learning, which is inspired from the parameter up-
dates suggested by gradient descent optimization algorithms. Our LSTM meta-learner uses its state
to represent the learning updates of the parameters of a learner model. It is trained to discover both
a good initialization for the learner’s parameters, as well as a successful mechanism for updating its
parameters to a given small training set for some new classification task. Our experiments demon-
strate that our approach outperforms natural baselines and is competitive to the state-of-the-art in
metric learning for few-shot learning.

In this work, we focused our study to the few-shot and few-classes setting. However, it would be
more valuable to train meta-learners that can perform well across a full spectrum of settings, i.e. for
few or lots of training examples and for few or lots of possible classes. Our future work will thus
consider moving towards this more challenging scenario.

8

Under review as a conference paper at ICLR 2017

(a) Forget gate values for 1-shot meta-learner
(b) Input gate values for 1-shot meta-learner

(c) Forget gate values for 5-shot meta-learner (d) Input gate values for 5-shot meta-learner

Figure 2: Visualization of the input and forget values output by the meta-learner during the course
of its updates. Layers 1 � 4 represent the values for a randomly selected parameter from the 4
convolutional layers and layer 5 represents the values for a random parameter from fully-connected
layer. The different curves represent training steps on different datasets.

the meta-learner updates the learner during training. We visualize the gate values while training
on different datasets D

train

, to observe whether there are variations between training sets. We
consider both 1-shot and 5-shot classification settings, where the meta-learner is making 10 and 5
updates, respectively. For the forget gate values for both tasks, the meta-learner seems to adopt a
simple weight decay strategy that seems consistent across different layers. The input gate values
are harder to interpret to glean the meta-learner’s strategy. However, there seems to a be a lot of
variability between different datasets, indicating that the meta-learner isn’t simply learning a fixed
optimization strategy. Additionally, there seem to be differences between the two tasks, suggesting
that the meta-learner has adopted different methods to deal with the different conditions of each
setting.

6 CONCLUSION

We described an LSTM-based model for meta-learning, which is inspired from the parameter up-
dates suggested by gradient descent optimization algorithms. Our LSTM meta-learner uses its state
to represent the learning updates of the parameters of a learner model. It is trained to discover both
a good initialization for the learner’s parameters, as well as a successful mechanism for updating its
parameters to a given small training set for some new classification task. Our experiments demon-
strate that our approach outperforms natural baselines and is competitive to the state-of-the-art in
metric learning for few-shot learning.

In this work, we focused our study to the few-shot and few-classes setting. However, it would be
more valuable to train meta-learners that can perform well across a full spectrum of settings, i.e. for
few or lots of training examples and for few or lots of possible classes. Our future work will thus
consider moving towards this more challenging scenario.

8

5-shot learning

IN CONCLUSION
• We consider learning on multi-domain data, in the form of few-shot learning

problem
‣ rather than usual train/test dataset split, each dataset consists of a set of datasets

• We parameterize a training algorithm in the form of a LSTM
‣ we train the meta-learner LSTM end-to-end on few-shot learning task

‣ parameters of LSTM represent both the training algorithm and initialization of model

• We evaluate our meta-learner model on mini-ImageNet dataset
‣ the meta-learner model is competitive with state-of-the-art metric-learning methods

16

THANKS!

17

