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Introduction: DNNs Effective, but not efficient (motivation) Smild @

* high storage (space complexity) — too big

1 Large DNNs are hard to deploy in practice. {
assive computation (time complexity) — too slow

Storage and computation of winners
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1.7 s/img (224x224 RGB image, on Intel Xeon(R) CPU E5-2620) Pruning: reduce the parameters while

maintain performance

[Han et al., 2015 NIPS] Han, Song, et al. "Learning both weights and connections for efficient neural networks." NeurlPS (2015)



How to do pruning: A typical way and its problem

typical 3-step pruning pipeline

Pruning criterion: Prune the weights whose absence leads to the /east loss increase.

Solutions:
(1) Trial and error? Too many weights (millions and billions params!) , we cannot ablate them one by one.
(2) Use some analytical formula = Taylor expansion = approximate the Hessian (very hard for DNNs).
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Can we leverage the Hessian without
knowing their specific values?
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Leverage Hessian without knowing Hessian

O How: Hessian can play its role by affecting weight magnitude (L1-norm).
O Magnitude is known to be not accurate for pruning? Not necessarily. It is accurate as long as the gap is

significant enough.

0 o

-norm
[
o

n
o
o

threshold

© 9o
> o

L

© ©
o N

| W—

e o o o o »
O

o N S [e)]
Normalized L,

e M e

Normalized Li-norm

0 20 40 60 80 100 120

Filter index Filter index

Misjudgments rarely happen;

Misjudgments probably happen;
L1-norm is accurate.

L1-norm is not accurate.
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How regularization can help SmilG

Parameter update in SGD: when a weight
stops update

w=w-a(diff — w) > Aw = dif f, where 1 is the factor of weight decay.

a: learning rate, diff: gradient

(Ideally) The final position of a weight will be determined by both
the task supervision and the regularization (task-agnostic prior),
where A can hold the balance.

; w = dif f
L < . > >

regularization force task force

Increase A a little. See what happens
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Theoretical Analysis

Ww* = (H+6\I)"'Hw"*, | (local quadratic approximation)

Case 1: Hessian is diagonal new converged weight
his D . 1
w; = LI, N R
T 1 ) — 5
hii + A ¥ 0N hy+1

.. . . increased L2 penalty factor revious converged weight
Case 2: Hessian is not diagonal (2d analysis) . ° °

{QZJT} 1 {(h11h22 + h110\ — h%g)wi‘ + 5)\h12’w§} 1 {(hnhzz + h110\ — h%Q)wf}

’UAJ; - ﬁ (h11h22 + h225)\ — h%z)wé‘ + 5)\h12w1‘ - ﬁ (h11h22 + h225>\ — h%Q)w;
1 1

= ] = |I:I| (h11ha2 + h110)\ — h%z), ro = |I:I| (hi1h22 + h220\ — h%Q)-

Conclusion: h{1 > hyy, > 11 > 19

A weight lying on a sharper local minimum will be pushed /ess towards zero.
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Empirical Validation of the Theoretical Analysis Smilé

* The weight magnitude gap will be larger and larger.
e Eventually, the simple L1-norm will suffice to make a faithful criterion.
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Figure 1: Row 1: Illustration of weight separation as Lo penalty grows. Row 2: Normalized filter
Li-norm over iterations for ResNet50 layer2.3.conv1 (please see the Appendix for VGG19 plots).



Regularization can also help in pruning schedule Smilé @

1
E(w,D) = L(w,D) + §>‘HWH%,
)‘j — )\j + 0\, for|all 5. GReg-2

1
E(w,D) = L(w,D) + §>\||W||3a
Aj=Aj+oAj €4y | Mj]l =0}

GReg-1

0 Same pruning criterion as L1-norm pruning [1]: sort all the filters by their L1-norm, select
those with the least L1-norms to prune (i.e., mask = 0).

O Two pruning schedules: (1) one-shot: remove the unimportant weights immediately; (2)
pushing them towards zero first by the proposed growing regularization, then remove them.

[1] Li, Hao, et al. “Pruning Filters for Efficient ConvNets.” ICLR (2017).
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Regularization can also help in pruning schedule

Table 1: Comparison between pruning schedules: one-shot pruning vs. our proposed GReg-1. Each
setting is randomly run for 3 times, mean and std accuracies reported.

ResNet56 + CIFAR10: Baseline accuracy 93.36%, #Params: 0.85M, FLOPs: 0.25G
Pruning ratio r (%) 50 70 90 92.5 95
Sparsity (%) / Speedup  49.82/1.99x  70.57/3.59x  90.39/11.41x  93.43/14.76 x  95.19/19.31 x
Acc. (%, L,+one-shot) 92.97410.15 91.884+0.09 87.344+0.21 87.3140.28 82.7940.22
Acc. (%, GReg-1, ours) [ 93.06:0.00 92.231021 89491023 88391015 85975016

Acc. gain (%) 0.09 0.35 2.15 1.08 3.18
VGG19 + CIFAR100: Baseline accuracy 74.02%, #Params: 20.08 M, FLOPs: 0.80G
Pruning ratio r (%) 50 60 70 80 90

Sparsity (%) / Speedup  74.87/3.60x  84.00/5.41 x 90.98/8.84 x 95.95/17.30x  98.96/44.22 x
Acc. (%, Li+one-shot) 71.49.4¢ 14 70.27 4092 66.05+0.04 61.59+0.03 51.36+0.11
Acc. (%, GReg-1,ours) | 71.50+0.12 70.33+0.12 67.35+0.15 63.55+0.29 57.09+0.03
Acc. gain (%) 0.01 0.06 1.30 1.96 5.73

Given exactly the same weights to prune, different pruning schedules can lead to starkly different performances.
 GReg-1 > One-shaot.
« Larger pruning ratio, the advantage of GReg-1 is more pronounced.
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Experimental Results (ImageNet, Filter Pruning) Smile
Table 3: Acceleration comparison on ImageNet. FLOPs: ResNet34: 3.66G, ResNet50: 4.09G.
Method Network Base top-1 (%) Pruned top-1 (%) Top-1 drop Speedup
L, (pruned-B) Lietal. (2017) 73.23 72.17 1.06 1.32x
Taylor-FO Molchanov et al. (2019) . 7331 72.83 0.48 1.29x
GReg-1 (ours) B 7331 73.54 0.23 1.32%
GReg-2 (ours) 73.31 73.61 -0.30 1.32x
ProvableFP Lichcnwein el al. (2020) o~ .en 76.13 75.21 0.92 1.43 %
|GReg-l (ours) R 26.13 ‘267 -0.14 1.49_><|
AOFP Ding et al. (2019b) N 75.34 75.63 -0.29 1.49 x
[GReg-2 (ours)* RESREOTT95 40 76.13 073 1.49x]
IncReg Wang et al. (2019b) 75.60 72.47 3.13 2.00x
SFP He et al. (2018a) 76.15 74.61 1.54 1.72x
HRank Lin et al. (2020a) 76.15 74.98 1.17 1.78 x
Taylor-FO Molchanov et al. (2019) 76.18 74.50 1.68 1.82 %
Factorized Li et al. (2019) ResNet50 76.15 74.55 1.60 2.33x
DCP Zhuang et al. (2018) 76.01 74.95 1.06 2.25x
CCP-AC Peng et al. (2019) 76.15 75.32 0.83 2.18x
GReg-1 (ours) 76.13 75.16 0.97
76.13 75.36 0.77 .
C-SGD-50 Ding et al. (2019a) 75.34 74.54 0.80 2.26x
AOFP Ding et al. (2019b) ResNet50 75.34 75.11 0.23 2.31x
[GReg-2 (ours)” 75.40 75.22 0.18 2.31x|
LFPC He et al. (2020) 76.15 /4.46 1.69 2.95X
GReg-1 (ours) ResNet50 76.13 74.85 1.28 2.56x
GReg-2 (ours) 76.13 74.93 1.20 2.56 x
IncReg Wang et al. (2019b) 75.60 71.07 4.53 3.00x
Taylor-FO Molchanov et al. (2019) R osNetS0 76.18 71.69 4.49 3.05x
GReg-1 (ours) T 76.13 13.75 2.38 3.06 <
GReg-2 (ours) 76.13 73.90 2.23 3.06x

* Since the base models of C-SGD and AOFP have a much lower accuracy than ours, for fair comparison, we
train our own base models with similar accuracy.



Experimental Results (ImageNet, Unstructured Pruning) Smils €

Table 4: Compression comparison on ImageNet with ResNet50. #Parameters: 25.56M.

Method Base top-1 (%) Pruned top-1 (%) Top-1 drop Sparsity (%)
GSM Ding et al. (2019¢) 75.72 74.30 1.42 80.00
Variational Dropout Molchanov et al. (20172) 76.69 75.28 1.41 80.00
DPF Lin et al. (2020b) 75.95 74.55 1.40 82.60
WoodFisher Singh & Alistarh (2020) 75.98 75.20 0.78 82.70
GReg-1 (ours) 76.13 75.45 0.68 82.70
GReg-2 (ours) 76.13 75.27 0.86 82.70

The proposed methods can work seamlessly from filter pruning to unstructured pruning.

 Filter pruning: weight group is a filter.
« Unstructured pruning: weight group is a single weight element.
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Conclusion

O we present two algorithms that exploit regularization in a new fashion that the penalty factor is uniformly
raised to a large amount.

U The two algorithms show that:
o GReg-1: Pruning schedule is another important axis in pruning, which may deserve more research attention.

o GReg-2: Without any Hessian approximation, we can still tap into its power for pruning with the help of
growing L2 regularization.

U Empirically, both algorithms achieve very promising results compared to many recent methods.

Our code and trained models are released at:
https://github.com/MingSun-Tse/Regularization-Pruning

Great thanks for your attention!
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