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Motivation

Our focus:
Provable guarantees for training deep networks to
classify structured data.

Hedgehogs

Hairbrushes

Pope et al. (2021): dim(ImageNet) ≈ 43, dim(CIFAR-10) ≈ 26



Two Manifold Problem (One-Dimensional)
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Problem. Given N i.i.d. labeled samples (x1, f?(x1)), . . . ,
(xN , f?(xN )) from M = M+ ∪M−, use gradient descent
to train a deep network fθ that perfectly labels the manifolds:

sign (fθ(x)) = f?(x) for all x ∈ M.



Network Architecture

• Fully connected with ReLUs
• Gaussian initialization θ0

• Trained with N i.i.d. samples
from density ρ by gradient
descent on empirical MSE
(step size τ) . . .
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Two Curve Problem: Instance Parameters
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Problem difficulty parameters:
• Class separation ∆;
• Class curvatures κ;
• Density properties infx∈M ρ(x), ...



Two Curve Problem: Resource Tradeoffs
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Theory question: How should we set our resources (depth L,
width n, samples N) relative to the data structure (separation
∆, curvature κ, density ρ) so that gradient descent succeeds?



Main Results: Certificates Imply Generalization

Definition. g : M → R is called a certificate if for all x ∈ M

fθ0(x)− f?(x)
mean
≈

square

∫
M

〈∇̃fθ0(x), ∇̃fθ0(x
′)〉︸ ︷︷ ︸

the “NTK”,Θ(x,x′)

g(x′)ρ(x′) dx′

and
∫
M (g(x′))2 ρ(x′) dx′ is small.

Theorem. If a certificate exists, if τ � 1/(nL), and if

L ≥ poly(κ,Cρ, CM, log n0),

n � poly(L),

N ≥ poly(L),

then with high probability the manifolds are classified perfectly
after no more than L2 gradient updates.
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Main Results: Generalization for a Simple Geometry

Proposition. If additionally L & ∆−1,
then with high probability a certificate
exists for the coaxial circle geometry.
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Corollary. For the two circles geometry, if τ � 1/(nL), and

L & ∆−1 + poly(Cρ, log n0),

n � poly(L),

N ≥ poly(L),

then with high probability the circles are classified perfectly
after no more than L2 gradient updates.

With Tingran Wang: certificates for general curves!



Intuitions for the Proof: Width as a Statistical Resource

Key role of width in the analysis:
• Ensuring Θ is uniformly

close to its expectation over
θ0 throughout training.
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Intuitions for the Proof: Width as a Statistical Resource

Key role of width in the analysis:
• Ensuring Θ is uniformly

close to its expectation over
θ0 throughout training.
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We prove concentration for manifolds of arbitrary dimension d0 ≥ 1.

Theorem. If n & L(d0 log(n0L))
4, then with high probability,

simultaneously for all (x,x′) ∈ M∣∣∣Θ(x,x′)− n lim
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Intuitions for the Proof: Depth as a Fitting Resource

• lim
n→∞

Eθ0

[
1
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]
measures

gradient descent’s ability to change
fθ0(x) without affecting fθ0(x

′).
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Intuitions for the Proof: Depth as a Fitting Resource

• lim
n→∞

Eθ0

[
1
nΘ(x,x′)

]
measures

gradient descent’s ability to change
fθ0(x) without affecting fθ0(x

′).
• Sharpness increases with depth.
=⇒ set depth based on geometry!
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For More Details...

1. Technical proof sketch: Section A.4
2. Discussion of open problems: Section 4
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Thanks for listening!


