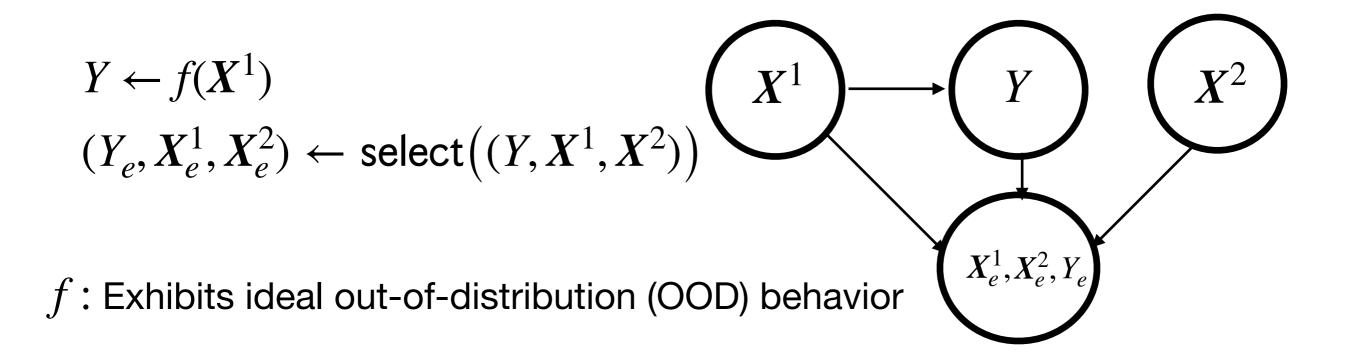

Empirical or Invariant Risk Minimization? A Sample Complexity Perspective

Kartik Ahuja

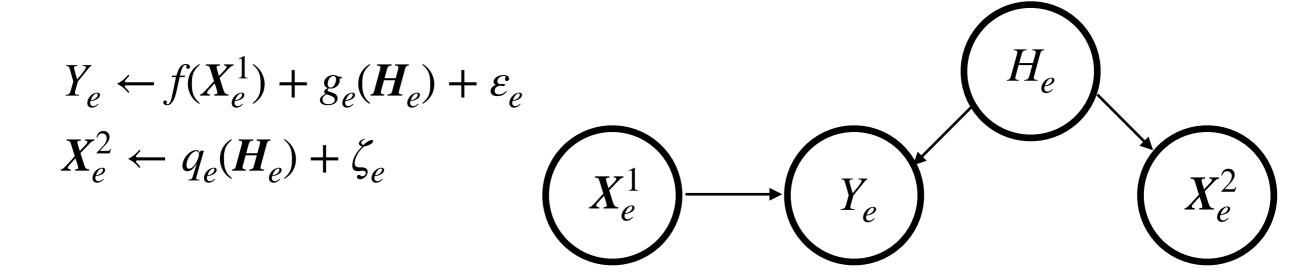
Failures due to spurious correlation

Usual cow: green background

Unusual cow: blue background


Deep neural networks exploit background color!

Motivation


- Invariant risk minimization (IRM) recently proposed to address out-of-distribution generalization
- Recent works [Gulrajani et al.] ERM continues to be SOTA
- A systematic sample complexity based comparison of ERM and IRM

IRM vs ERM under selection bias

Bias	Method	Sample Complexity	OOD
Selection bias	ERM	$\frac{8L^2}{\nu^2}\log\left(2\frac{ \mathcal{H}_{\Phi} }{\delta}\right)$	Yes
Selection bias	IRM	$\max \left\{ \frac{8L^2}{\nu^2} \log \left(4 \frac{ \mathcal{H}_{\Phi} }{\delta} \right), \frac{16L^4}{\epsilon^2} \log \left(\frac{2}{\delta} \right) \right\}$	Yes

IRM vs ERM under confounding bias

f: Exhibits ideal out-of-distribution behavior

Bias	Method	Sample Complexity	OOD
Confounding	ERM	$\frac{8L^2}{\nu^2}\log\left(2\frac{ \mathcal{H}_{\Phi} }{\delta}\right)$	No
Confounding	IRM	$\frac{16L^{'4}}{\epsilon^2}\log\left(\frac{2 \mathcal{H}_{\Phi} }{\delta}\right)$	Yes

IRM vs ERM under anti-causal bias

$$Y_e \leftarrow f(X_e^1) + \varepsilon_e$$

$$X_e^2 \leftarrow c_e(Y_e) + \zeta_e$$

$$X_e^1 \longrightarrow X_e^1$$

$$X_e^2 \leftarrow X_e^1$$

f: Exhibits ideal out-of-distribution behavior

Bias	Method	Sample Complexity	OOD
Anti-causal	ERM	$\frac{8L^2}{\nu^2}\log\left(2\frac{ \mathcal{H}_{\Phi} }{\delta}\right)$	No
Anti-causal	IRM	$\frac{16L^{'4}}{\epsilon^2}\log\left(\frac{2 \mathcal{H}_{\Phi} }{\delta}\right)$	Yes

Thank you!