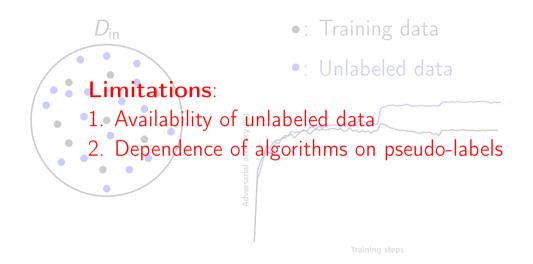
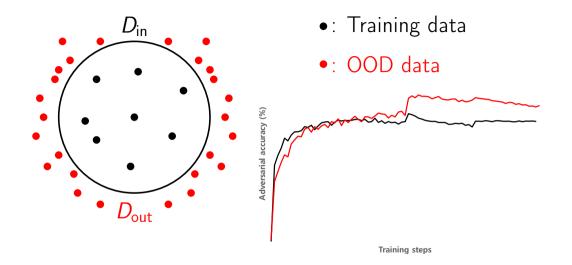
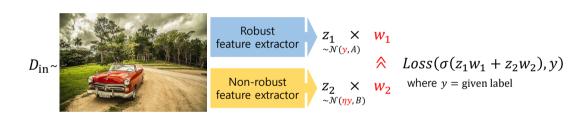
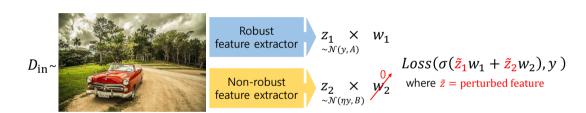

Removing Undesirable Feature Contributions Using Out-of-Distribution Data


Saehyung Lee Changhwa Park Hyungyu Lee Jihun Yi Jonghyun Lee Sungroh Yoon

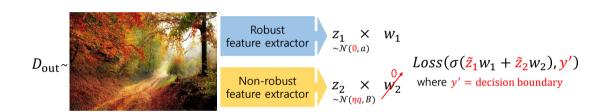


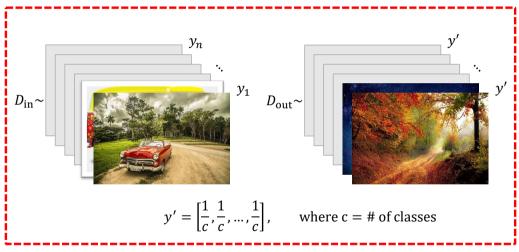
- •: Training data
- •: Unlabeled data




Assumption

Undesirable features are shared among diverse image datasets.


Non-robust classifier


Adversarial training

Proposed method

Proposed method

Training mini-batch

Experimental details

- ▶ 80M-TI: An OOD dataset created from the 80 Million Tiny Images dataset (Torralba et al.,2008) using confidence-based OOD detection algorithm (Carmon et al., 2019).
- ► Mainly compare the following setting:
 - ► PGD: The model trained using PGD-based adversarial training (Madry et al., 2017)on the target dataset.
 - ► TRADES: The model trained using TRADES (Zhang et al., 2019) on the target dataset.
 - ► OAT_{PGD}: The model which is adversarially trained with OAT based on a PGD approach.
 - ► OAT_{TRADES}: The model which is adversarially trained with OAT based on TRADES.

Adversarial training results

	Model	Target	OOD	Clean	PGD100	CW100	AA
•	Standard		-	95.48	0.00	0.00	0.00
	PGD		-	87.48	49.92	50.80	48.29
	PGD+CutMix	CIFAR10	-	89.35	53.39	52.35	49.05
	TRADES		-	85.24	55.69	54.04	52.83
Γ	OAT_{PGD}		80M-TI	86.63	56.77	52.38	49.98
L	OAT_{TRADES}		80M-TI	86.76	59.66	55.71	54.63
-	Standard		-	78.57	0.02	0.00	0.00
	PGD		-	61.37	24.66	24.68	22.76
	TRADES	CIFAR100	-	58.84	30.24	27.97	26.91
Г	OAT_{PGD}		80M-TI	61.54	30.02	27.85	25.36
L	OAT_{TRADES}		80M-TI	63.07	34.23	29.02	27.83
-	Standard	ImaNat10	-	86.03	0.11	0.06	0.00
	PGD	ImgNet10	-	82.80	48.77	48.86	48.34
\subset	$\mathrm{OAT}_{\mathrm{PGD}}$	(04 X 04)	ImgNet990	81.91	59.03	54.69	53.83

Adversarial training results

	CIFARIU			IlligNet10 (64 x 64)			
OOD	None	SVHN	Simpson	Fashion	None	Places365	VisDA17
Clean	87.48	86.16	86.79	85.84	82.80	82.37	82.46
PGD20	50.41	53.70	53.88	53.27	49.00	59.86	55.34
CW20	51.11	52.21	52.15	51.70	48.91	56.23	53.80

ImaNat10 (64 v 64)

CIEA D 10

Standard training results

$Dataset \\ N$	CIFAR10 2,500 / Full	CIFAR100 2,500 / Full	Dataset	ImgNet10 (64 x 64)	ImgNet10 (160 x 160)
Standard	65.44 / 94.46	24.41 / 74.87	N	100 / Full	100 / Full
${ m OAT_{SVHN}} \ { m OAT_{Simpson}}$	68.56 / 94.45 70.08 / 94.43	24.82 / 75.65 27.04 / 76.03	Standard	37.90 / 86.93	33.36 / 90.91
OAT_{80M-TI}	72.49 / 95.20	26.13 / 76.30	${ m OAT_{VisDA17}} \ { m OAT_{Places365}}$	36.21 / 86.71 41.84 / 88.37	35.93 / 91.23 40.11 / 91.42
Pseudo-label Fusion	- / 95.28 - / 95.53	- /77.24 - / 77.36	OAT _{ImgNet990}	42.18 / 87.88	40.41 / 91.87

Conclusion

- ► Propose out-of-distribution data augmented training (OAT) to leverage OOD data for adversarial and standard learning.
- ► Our theoretical analyses demonstrate how our proposed method can improve robust and standard generalization.
- ➤ The experimental results on CIFAR-10, CIFAR-100, and a subset of ImageNet suggest that OAT can help reduce the generalization gap in adversarial and standard learning.
- ▶ By applying OAT using various OOD datasets, it is shown that undesirable features are shared among diverse image datasets.

Thank you!

https://github.com/Saehyung-Lee/OAT

Acknowledgements: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) [2018R1A2B3001628], the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University in 2020, and AIR Lab (AI Research Lab) in Hyundai & Kia Motor Company through HKMC-SNU AI Consortium Fund.