LARGE-WIDTH FUNCTIONAL ASYMPTOTICS FOR DEEP GAUSSIAN NEURAL NETWORKS

Daniele Bracale¹, Stefano Favaro^{1,2}, Sandra Fortini³, Stefano Peluchetti⁴ ¹ University of Torino, ² Collegio Carlo Alberto, ³ Bocconi University, ⁴ Cogent Labs

March 20, 2021

INTRODUCTION

	Input	Black box	Output
Classic problem	$\{\mathbf{z}_{i},,\mathbf{z}_{k}\} \in \mathbb{R}^{T}$	Neural Network (with random weights)	KxI-dim. random variable
Functional approach	R ^I	Neural Network (with random weights)	Stochastic process om R ^I

イロト イヨト イヨト イヨト

Fully connected feed-forward deep NN

Why an infinite-width NN? Gaussian Process (GP). Applications in NTK, functional-data analysis, Bayesian NN ecc, where the smoothness of the limiting GP provides satisfactory inference performance.

Assumptions and definitions

(I) $L \ge 1$ layers

(II) *n* goes to infinity jointly on network's layers

- (III) Wheights: $\omega_{i,j}^{(l)}$ are iid $N(0, \sigma_{\omega}^2)$
- (IV) **Biases**: $b_i^{(1)}$ are iid $N(0, \sigma_b^2)$
- (v) Activation function: $\phi : \mathbb{R} \to \mathbb{R}$ Lipschitz non-linearity

(V) Node *i* on a layer *l*, is a random process

 $x \mapsto f_i^{(l)}(x, n) = \begin{cases} \sum_{j=1}^{\mathcal{I}} \omega_{i,j}^{(1)} x_j + b_i^{(1)}, & l = 1\\ \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \omega_{i,j}^{(l)} \phi(f_j^{(l-1)}(x, n)) + b_i^{(l)}, & l > 1 \end{cases}$

Remark: $f_i^{(l)}(n) \in C(\mathbb{R}^{\mathcal{I}}; \mathbb{R})$ and are Lipschitz. **Aim**: What about the limiting process? Does the NN converges on a function space? Take the limit as *n* goes to infinity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへの

Step 1

The weak-limit process $f_i^{(l)}$ exists. Compute the limit of the fdd. Tool: Levy thm: $\varphi_{f_i^{(l)}(\mathbf{X},n)}(\mathbf{t}) \rightarrow \varphi_{f_i^{(l)}(\mathbf{X})}(\mathbf{t})$ for all $\mathbf{X} = (x^{(1)}, \dots, x^{(k)})$

Step 2

 $f_i^{(l)}$ is a.s. continuous and locally γ -Hölder continuous $\forall \gamma \in (0, 1)$. Tool: Kolmogorov-Chentsov thm: $\mathbb{E}|f_i^{(l)}(x) - f_i^{(l)}(y)|^{\alpha} \leq H|x - y|^{\mathcal{I}+\beta}$

Step 3

 $f_i^{(l)}(n)$ and $f_i^{(l)}$ define probability measures on $C(\mathbb{R}^{\mathcal{I}}; \mathbb{R})$. Tool: Kolmogorov extension thm: consistency property.

CONVERGENCE IN FUNCTION SPACE

 $f_i^{(l)}(n) \stackrel{d}{\to} f_i^{(l)}$ on $C(\mathbb{R}^{\mathcal{I}}; \mathbb{R})$. Proof: Tightness $f_i^{(l)}(n)$ is tight in $C(\mathbb{R}^{\mathcal{I}}; \mathbb{R})$ + Steps 1-3.

LIMIT FOR A LAYER / JOINTLY ON THE NODES

$$\begin{cases} \mathbf{F}^{(1)}(x) = \left[f_1^{(1)}(x), f_2^{(1)}(x), \dots \right]^T \in \mathbb{R}^\infty \\ \mathbf{F}^{(l)}(x, n) = \left[f_1^{(l)}(x, n), f_2^{(l)}(x, n), \dots \right]^T \in \mathbb{R}^\infty \end{cases}$$

Results for $f_i^{(l)}(\mathbf{X}, n)$ imply results for $F^{(l)}(\mathbf{X}, n)$, i.e. we have

1) ∃ the weak-limit process F^(l) such that F^(l)(n) → F^(l).
2) F^(l)(1), F^(l)(2),... and the limit process F^(l) are continuous.
3) F^(l)(1), F^(l)(2),... and the limit process F^(l) define prob. measures on C(ℝ^I; ℝ[∞]).

• 4) functional weak convergence: $\mathbf{F}^{(I)}(n) \stackrel{d}{\rightarrow} \mathbf{F}^{(I)}$ on $C(\mathbb{R}^{\mathcal{I}}; \mathbb{R}^{\infty})$.

イロト (得) (ヨ) (ヨ) ヨ

DISCUSSION

We proved that a large-width deep NN with Gaussian wheights induces a continuous GP on $C(\mathbb{R}^{\mathcal{I}}; S)$ with $S = \mathbb{R}$ or \mathbb{R}^{∞} . More precisely:

- Classic approach: the fd sequence of stochastic processess defined on R^I converges weakly to a Gaussian process on R^I;
- Smoothness: the limiting process is locally γ-Hölder continuos for each γ ∈ (0, 1);
- Functional convergence: the sequence of stochastic processes converges weakly to a GP on C(ℝ^I; S).

E.g. of application: consider a continuous map $g : C(\mathbb{R}^{\mathcal{I}}; \mathbb{R}^{\infty}) \to \mathbb{R}$. By continuous mapping theorem $g(\mathbf{F}^{(l)}(n)) \stackrel{d}{\to} g(\mathbf{F}^{(l)})$, and under uniform integrability $\mathbb{E}[g(\mathbf{F}^{(l)}(n))] \to \mathbb{E}[g(\mathbf{F}^{(l)})]$.