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Is the performance gain due to  
more params or larger width?



How to increase width independently from the number of params?
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Static Sparsity

we are not aiming for performance gains through sparsity

method advantage: it does not alter the NN architecture

sparsity pattern: random, applied at initialization, static
in-layer distribution uniform across all layer dimensions
per-layer distribution according to layer size

8



select model type and architecture

baseline: dense model (full connectivity)

fix the number of weights

build a family of models having different widths and sparsity levels

train and compare performance

(task: image classification)

wide & sparse: increase the width and
remove excess weights

Our approach in summary:

e.g. ResNet18 with
8 output channels
in the first conv layer

but same number of weights



Sparsity distribution in a ResNet18 with base width 8



Results: ResNet-18
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test accuracy increases with the width, even though  
the number of weights is fixed



How much improvement is due to width only?

compare perf increase for wide & sparse to wide & dense models:

∆ test acc. (sparse)

∆ test acc. (dense)
=

as long as the model can achieve high training accuracy,  
most of the improvement in performance can be attributed to the width



Theory: ∞-width limit and GP kernels
Gaussian Process

hypothesis:  performance improvement is correlated with
having a GP kernel that is closer to the ∞-width kernel 

hypothesis:  the distance to the ∞-width kernel can be reduced
by increasing network width

perf. correlates strongly with the distance to the ∞width kernel:  
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p⋆ ≈ np/4d

theory predicts
optimal connectivity

layer width n
input dimension d

np=with const.

p⋆ ≈
np
4d


