ICLR 2021

Are wider nets better given the same number of parameters?

github.com/google-research/wide-sparse-nets

Anna Golubeva^{1*}
agolubeva@pitp.ca

Behnam Neyshabur² neyshabur@google.com

Guy Gur-Ari² guyga@google.com

¹Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada *Work done while an intern at Blueshift.

²Blueshift, Alphabet, Mountain View, CA

 Increasing the number of NN parameters improves performance.

• Increa	asing the number	of NN parame	ters improves pe	rformance.
• The n	number of paramet	ters is increas	ed along with lay	er width.

- Increasing the number of NN parameters improves performance.
- The number of parameters is increased along with layer width.
 - ▶ Is the performance gain due to more params or larger width?

How to increase width independently from the number of params?

(a) Linear Bottleneck

(b) Non-linear Bottleneck

(c) Static Sparsity

How to increase width independently from the number of params?

(c) Static Sparsity

Static Sparsity

- sparsity pattern: random, applied at initialization, static
- in-layer distribution uniform across all layer dimensions
- per-layer distribution according to layer size
- method advantage: it does not alter the NN architecture
- we are not aiming for performance gains through sparsity

Our approach in summary:

- select model type and architecture
- fix the number of weights

e.g. ResNet18 with 8 output channels in the first conv layer

baseline: dense model (full connectivity)

 build a family of models having different widths and sparsity levels but same number of weights

wide & sparse: increase the width and remove excess weights

train and compare performance

(task: image classification)

Sparsity distribution in a ResNet18 with base width 8

Results: ResNet-18

test accuracy increases with the width, even though the number of weights is fixed

How much improvement is due to width only?

compare perf increase for wide & sparse to wide & dense models:

as long as the model can achieve high training accuracy, most of the improvement in performance can be attributed to the width

Theory: ∞-width limit and GP kernels

Gaussian Process

- hypothesis: performance improvement is correlated with having a GP kernel that is closer to the ∞-width kernel
- hypothesis: the distance to the ∞-width kernel can be reduced by increasing network width
- perf. correlates strongly with the distance to the ∞width kernel:

theory predicts optimal connectivity

$$p_{\star} \approx \sqrt{\frac{np}{4d}}$$
 with $np = \text{const.}$ input dimension d layer width n