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® The number of parameters is increased along with layer width.

» Is the performance gain due to
more params or larger width?



How to increase width independently from the number of params?
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How to increase width independently from the number of params?
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Static Sparsity
Example:
remove

Number of weights

. >
largest smallest Layer

® sparsity pattern: random, applied at initialization, static
e in-layer distribution uniform across all layer dimensions
e per-layer distribution according to layer size

e method advantage: it does not alter the NN architecture

Y we are not aiming for performance gains through sparsity



Our approach in summary:

® select model type and architecture e.g. ResNet18 with
_ _ 8 output channels
e fix the number of weights in the first conv layer

baseline: dense model (full connectivity)

® build a family of models having different widths and sparsity levels
but same number of weights

wide & sparse: increase the width and
remove excess weights

® train and compare performance

(task: image classification)



Sparsity distribution in a ResNet18 with base width 8

width 12 width 27 width 40
sparsity 55.01% sparsity 90.99% sparsity 95.88%
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Results: ResNet-18
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P test accuracy increases with the width, even though
the number of weights is fixed



How much improvement is due to width only?

® compare perf increase for wide & sparse to wide & dense models:
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» as long as the model can achieve high training accuracy,
most of the improvement in performance can be attributed to the width
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Theory: co-width limit and GP kernels

Gaussian Process

® hypothesis: performance improvement is correlated with
having a GP kernel that is closer to the oco-width kernel

® hypothesis: the distance to the oo-width kernel can be reduced
by increasing network width

» perf. correlates strongly with the distance to the cowidth kernel:
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