
Systematic generalisation with group invariant predictions

Published as a conference paper at ICLR 2021

SYSTEMATIC GENERALISATION WITH GROUP INVARI-
ANT PREDICTIONS

Faruk Ahmed1⇤, Yoshua Bengio1,2, Harm van Seijen3, Aaron Courville1,2
1 Université de Montréal, Mila, 2CIFAR Fellow, 3Microsoft Research

ABSTRACT

We consider situations where the presence of dominant simpler correlations with
the target variable in a training set can cause an SGD-trained neural network to
be less reliant on more persistently correlating complex features. When the non-
persistent, simpler correlations correspond to non-semantic background factors, a
neural network trained on this data can exhibit dramatic failure upon encountering
systematic distributional shift, where the correlating background features are re-
combined with different objects. We perform an empirical study on three synthetic
datasets, showing that group invariance methods across inferred partitionings of the
training set can lead to significant improvements at such test-time situations. We
also suggest a simple invariance penalty, showing with experiments on our setups
that it can perform better than alternatives. We find that even without assuming
access to any systematically shifted validation sets, one can still find improvements
over an ERM-trained reference model.

1 INTRODUCTION

If a training set is biased such that an easier-to-learn feature correlates with the target variable
throughout the training set, a modern neural network trained with SGD will use that factor to perform
predictions, ignoring co-occurring harder-to-learn complex predictive features (Shah et al., 2020).
Without any other criteria, this is arguably desirable behaviour, reflecting Occam’s razor. We consider
the situation where although such a simpler correlation is a dominant bias in the training set, a
minority group exists within the dataset where the bias does not manifest. In such cases, relying
on more complex predictive features which more pervasively explain the data can be preferable to
simpler ones that only explain most of it. For example, if all chairs are red, redness ought to be a
predictive rule for chairhood (without any other criteria for predictions). However, if some chairs are
not red, and all chairs have backs and legs, then one can infer that redness is less relevant.

In this paper, we will study object recognition tasks, where the objects correlate strongly with
simpler non-semantic background information for a majority of the images, but not for a minority
group. There is evidence in the literature that modern CNNs tend to fixate on simpler features such
as texture (Geirhos et al., 2019; Brendel & Bethge, 2019), canonical pose (Alcorn et al., 2019),
or contextual background cues (Beery et al., 2018). We are assuming that semantic features in a
classification context (ones that humans would agree contribute to their labelling of objects) are
more likely to persistently correlate with the target variable, while simpler non-semantic background
biases are more likely to exhibit non-persistent correlations in real-life data collection processes.
Based on this assumption, we will use combinations of objects and backgrounds to compare test-time
performances corresponding to particular distributional shifts.

Consider coloured MNIST digits such that there is a dominant, but not universal, correlation between
colour and digit identity for a majority of the images. In the situation we are considering, if the biasing
colours in the majority group are not recombined with different digits in the minority group, then there
is no signal for the model to disregard these biasing factors, which are retained as important predictive
rules. This can lead to poor performance at systematic generalisation (Lake & Baroni, 2018), where
an object occurs with another object’s biasing factor, and at semantic anomaly detection (Ahmed
& Courville, 2020), where a novel object appears with one of the biasing factors. In our example
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Table 1: For a coloured MNIST dataset with every digit correlated with a colour 80% of the time,
we see poor performance at systematically varying tasks. Performance improves if the minority
group combines colours from other biased digits - this provides corrective gradients that promote
invariance to colour. Non-systematic shifts are when unseen colours are used, and anomaly detection
is measured by decreased predictive confidence for an unseen digit (see Section 2 for more details).

Minority colours In-distribution Non-systematic shift Systematic shift Anomaly detection

Different 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23
Recombinations 98.67 ± 0.39 85.05 ± 1.89 97.56 ± 0.05 46.59 ± 6.93

with coloured MNIST, if we colour the minority group digits with the colours used to bias (different)
digits in the majority group, we find a marked improvement at systematically shifted tests over the
case when the colours in the minority group are different colours altogether (see Table 1).

We investigate the role of encouraging robust predictive behaviour across such groups in terms of
improved performance at tasks with such distributional shifts. Our experiments suggest that training
with cross-group invariance penalties can result in models that have learned to be more reliant on
persistent complex correlations without being overwhelmed by simpler, yet less stable features, as
indicated by improved performance at systematic generalisation and semantic anomaly detection on
our synthetic setups.

We find that a recently proposed method (Creager et al., 2020) can be effective at inferring the
majority and minority groups along a learned feature-bias, and we use this inferred partition to
provide us with groups in the training set in our comparative study. We also suggest a new method
for encouraging predictions that rely on persistent correlations across such groups, with the intuition
that similar predictive behaviour across the groups should be promoted throughout training. With
experiments on three synthetic datasets, we compare the performance of recently proposed invariance
penalties and methods, and find that our variant can often perform better at tasks involving such
test-time distributional shifts.

2 SYSTEMATIC AND NON-SYSTEMATIC GENERALISATION

If we assume that data x is generated via a composition C of semantic factors hs and non-semantic
factors hn, we can use this decomposition, x = C(hs, hn), to generate test datasets to capture
different scenarios. While hn is actually independent of y, we shall have the independence property
pD(hn|y) = pD(hn) to not hold when there is bias in the dataset D due to hn–y correlations.

We can evaluate, for a particular target y and our system’s prediction of the target ŷ(x), the average
accuracy E

⇥
1{ŷ(C(hs, hn)) = y}

⇤
, as a measure of generalisation for the following different cases.

(a) Tr (b) Tg (c) Ts (d) Tn (e) Ta

Figure 1: COLOURED MNIST training and test sets for evaluating generalisation under non-semantic
marginal shift and systematic shift, and anomaly detection. (a) Training set; (b) In-distribution
generalisation set Tg, where the test set is coloured following the same scheme as for Tr; (c)
Systematic-shift generalisation set Ts, where we colour the test set with the biasing colours, but such
that no digit is coloured with its own biasing colour; (d) Non-systematic-shift generalisation set Tn,
where the test is coloured with random colours that are different from any of the colours seen in the
training set; and (e) Semantic anomaly detection set Ta, where we colour the held-out digits of the
test set randomly with the biasing colours.
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Figure 2: (left) COCO-ON-COLOURS; left block is the majority group, right block is the “unbiased”
minority group; (right) COCO-ON-PLACES.

4 RELATED WORK

The dominant perspective towards the issue of unreliable behaviour in novel domains has consisted
of treating the problem as that of domain generalisation (Blanchard et al., 2011). One hopes to
recover stable features by encouraging invariance across data sampled from different domains, so
that performance at test-time out-of-distribution (OoD) scenarios is less likely to be unstable.

Approaches along such lines typically resemble a cross-domain distribution-matching penalty applied
to the features being learned, augmenting the usual ERM term (Ganin et al., 2016; Sun & Saenko,
2016; Heinze-Deml & Meinshausen, 2017; Li et al., 2018; Li et al., 2018a;b), and evaluated on
datasets that consist of data in different modalities (Li et al., 2017; Peng et al., 2019; Venkateswara
et al., 2017), or collected through different means (Fang et al., 2013), or in different contexts (Beery
et al., 2018).

Works with the perspective of distributionally robust optimisation (DRO) have generally considered
using uncertainty sets around training data (Ben-Tal et al., 2013; Duchi & Namkoong, 2018) to
minimise worst-case losses, which can often have a regularising effect by effectively up-weighting
harder examples. More relevant to our discussion, group DRO methods have considered uncertainty
sets in terms of different groups of data, for example with different cross-group distributions of
labels (Hu et al., 2018), or groups collected differently (Oren et al., 2019), similarly to domain
generalisation datasets.

More recently, methods promoting the learning of stable features across data from different environ-
ments, or sources, have been proposed by using gradient penalties (Arjovsky et al., 2019), risk-based
extrapolation (Krueger et al., 2020), and masking gradients with opposing signs (Parascandolo et al.,
2020).

The typical datasets in such existing works are not curated with testing performance under systematic
distributional shift in mind, most often not characterising the specific shift in distribution. In recent
times, a commonly adopted synthetic dataset is the coloured MNIST variant used in Arjovsky et al.
(2019) – since this particular dataset uses flipped colours for the minority group, which is less of
a problem with ERM-training, the true digit labels were flipped at a sufficiently high frequency to
incapacitate ERM performance by forcing reliance on colour. We believe setups such as ours can be
better synthetic testbeds for developing ideas, where it is not necessary to alter ground truth labels to
expose a failure mode. In general, using better models of dataset bias implies a narrower disconnect
with realistic settings, with higher chances of the conclusions carrying over.

5 EXPERIMENTS

We compare performance with our four test sets - in-distribution, non-systematically shifted, sys-
tematically shifted, semantic anomalies - for a range of recently proposed methods for a set of three
synthesised datasets. Appendix B describes architectural details and training choices.

5.1 METHODS

We compare recent methods aimed at robust predictions across groups, and which do not require
changes to network capacity or additional adversaries to impose invariance penalties. We also do
not include methods based on advances in self-supervised feature learning, such as Carlucci et al.
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(2019), since such methods are developed with prior knowledge of the desired invariances, and are
thus limited in their generality.

Baseline: This is our reference model, trained via ordinary (regularised) empirical risk minimisation
(ERM) without any invariance penalties added. The choices for architecture and regularisers were
made to conform to the way modern networks are typically trained with in-distribution performance
in mind (details in Appendix B).

IRMv1, REx, GroupDRO: IRMv1 (Arjovsky et al., 2019) and REx (Krueger et al., 2020) are two
methods that augment the standard ERM term with invariance penalties across data from different
sources. GroupDRO (Sagawa et al., 2020) is an algorithm for distributional robustness, which works
by weighting groups of data as a function of their relative losses. See Appendix C for more details
about these methods.

cIRMv1, cREx, cGroupDRO: We implement label-conditional variants of the above algorithms,
which, to our knowledge, has not been explored. In the context of multi-class classification it
is reasonable to expect that performances might have multi-modal distributions along different
categories earlier in training, which suggests stratification by class might improve performance.

Reweight: We weight the losses in the biased group down. This is a heuristic form of re-balancing
the dataset, while choosing a hyper-parameter for the weight using the validation set, with the weight
serving to downweight the losses for the biased group. In preliminary experiments we found this
re-weighting variant (King & Zeng, 2001) to significantly outperform oversampling the minority
group, as suggested in Buda et al. (2018), or weighting the grouped losses using their population
ratios, as performed for imbalanced classes in Cui et al. (2019).

cMMD: Following Li et al. (2018), we match the MMD (Gretton et al., 2012) of the distribution of
features. In preliminary experiments, we find a conditional version (as done with adversarial models
in (Li et al., 2018a)) to perform significantly better, so we only report cMMD results here.

5.2 DATASETS

Evaluating performance in an unambiguous manner for the specific kinds of generalisation that we
aim to study necessitates controlled test-beds. In order to model these tasks, we use 3 synthetic
datasets of progressively higher complexity, approaching photo-realism.

COLOURED MNIST: This is the simplest setting, where the background information exists as part of
the object.

COCO-ON-COLOURS: We superimpose 10 segmented COCO (Lin et al., 2014) objects on coloured
backgrounds. The training set has 800 images per category, with nine in-distribution categories and
one held-out category for anomaly detection. Validation and test sets have 100 each images per
category. See Figure 2 (left). This is the most extreme dataset in our experiments in terms of the
contrast in complexity between the non-semantic correlating factor (background colour) vs. stable
features (objects).

COCO-ON-PLACES: Here we superimpose the same COCO objects on scenes from the PLACES
dataset (Zhou et al., 2017), with the place-scenes acting as the bias (figure 2, right). See Appendix A
for more details about how these datasets are constructed. While the backgrounds in this dataset
are more complex than colour, they still act as biasing factors, as indicated in the relatively poorer
performance at systematic generalisation, and were selected due to visually obvious and distinct
colour or texture.

5.3 RESULTS

In all cases, we have used the partition predictor to infer the two groups. The partition accuracies for
the three datasets at the end of one epoch of training the base models are in the table below. We tested
a more naïve approach by applying K-Means clustering to the losses, but found it to under-perform,
possibly because it cannot account for a consistent feature bias learned by our reference model.

COLOURED MNIST COCO-ON-COLOURS COCO-ON-PLACES

97.26 ± 0.71 98.22 ± 1.05 80.43 ± 1.41
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Table 2: Generalisation results on COLOURED MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.47 ± 0.05 63.24 ± 3.04 55.19 ± 1.07 11.54 ± 1.18
REx 98.95 ± 0.11 72.12 ± 1.90 71.18 ± 3.27 15.54 ± 2.05
GroupDRO 89.47 ± 4.52 70.53 ± 1.79 79.17 ± 1.64 35.15 ± 10.83
Reweight 98.51 ± 0.12 75.01 ± 1.28 84.85 ± 0.61 28.60 ± 1.11

cIRMv1 99.36 ± 0.25 65.78 ± 3.53 61.09 ± 5.30 14.16 ± 2.12
cREx 98.56 ± 0.12 74.35 ± 2.09 80.01 ± 2.11 22.02 ± 2.52
cGroupDRO 95.65 ± 3.23 75.41 ± 3.45 81.14 ± 2.41 26.61 ± 6.61
cMMD 99.40 ± 0.03 97.17 ± 0.59 97.86 ± 0.16 78.32 ± 4.15

PGI 99.05 ± 0.08 98.58 ± 0.06 98.48 ± 0.05 89.42 ± 1.95

Table 3: Generalisation performance on COCO-ON-COLOURS.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.61 ± 0.38 32.30 ± 4.52 2.11 ± 0.30 5.81 ± 0.17
REx 91.69 ± 0.50 36.57 ± 4.03 2.69 ± 0.81 5.73 ± 0.14
GroupDRO 43.06 ± 2.26 41.32 ± 4.39 43.24 ± 2.89 20.05 ± 3.08
Reweight 42.42 ± 3.47 47.56 ± 2.27 49.12 ± 1.63 18.15 ± 3.81

cIRMv1 91.53 ± 0.31 31.11 ± 4.51 1.74 ± 0.40 5.87 ± 0.16
cREx 74.75 ± 14.14 32.29 ± 7.71 29.75 ± 5.16 19.77 ± 14.98
cGroupDRO 41.10 ± 2.37 41.83 ± 2.96 42.10 ± 2.15 21.81 ± 5.40
cMMD 89.87 ± 1.13 55.02 ± 2.29 27.36 ± 1.57 8.82 ± 0.70

PGI 78.23 ± 2.01 55.57 ± 4.60 51.62 ± 3.09 18.84 ± 2.11

In Tables 2,3,4, we find that significant improvements can be achieved using group invariance methods.
All hyper-parameters for the results in this set are picked on a validation set consisting of a subset of
colours or backgrounds that are different from both the training and test sets, and an equally sized
subset of systematically varying colours or backgrounds from the biased majority group. In all cases,
the split is learned after one epoch of training, and the various penalties dropped in at this point with
a linearly ramped-in penalty co-efficient. Details about hyper-parameter selection are in Appendix C.

While conditional variants perform better at systematic generalisation for COLOURED MNIST,
perhaps owing to our hyper-parameter selection procedure of using a mixed-shift validation set,
performance at systematic shift appears to be traded off with non-systematic shift in some cases for
the more complex datasets. All aggregates are over 5 trials.

5.4 PRACTICAL CONSIDERATIONS FOR HYPER-PARAMETER SELECTION

While we find that with the use of group invariance penalties it is possible to encourage reliance upon
complex persistent correlations in the presence of dominant simple biases, this can sometimes come
at a cost to in-distribution performance when picking hyper-parameters using validation sets with
specific distributional shift. One might reasonably expect that this can be mis-aligned with real-life
situations: in practice, one typically does not have access to data corresponding exactly to unexpected
scenarios, besides not expecting to encounter situations outside the training distribution nearly as
often as situations for which a model has been trained and deployed. A practitioner might wish to
aim for a clearer trade-off with such situations, with prior knowledge of how often they might arise
compared to in-distribution situations, and with a surrogate validation set to model distributional
shift. Here, we will simply show that picking hyper-parameters without assuming access to validation
sets consisting of systematic distributional shift can still provide improvements over the baseline
reference model. We consider three cases.
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Table 4: Generalisation performance on COCO-ON-PLACES.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.55 ± 0.70 45.35 ± 0.92 29.56 ± 0.77 9.46 ± 0.51
GroupDRO 76.05 ± 0.87 43.72 ± 0.43 31.83 ± 0.54 9.61 ± 0.55
Reweight 81.14 ± 0.80 45.84 ± 0.70 30.37 ± 1.16 9.75 ± 0.69

cIRMv1 80.08 ± 1.90 44.96 ± 2.88 30.06 ± 2.07 9.64 ± 0.94
cREx 81.50 ± 0.76 45.44 ± 0.96 29.12 ± 0.97 9.17 ± 0.59
cGroupDRO 78.25 ± 0.31 41.69 ± 0.08 28.16 ± 0.91 9.45 ± 0.22
cMMD 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45

PGI 75.00 ± 0.85 46.10 ± 0.79 36.25 ± 0.42 11.12 ± 0.85

cMMD (oracle split) 75.05 ± 0.98 47.88 ± 1.03 37.40 ± 1.07 10.76 ± 0.61
PGI (oracle split) 70.63 ± 0.48 48.11 ± 0.82 42.69 ± 0.84 12.56 ± 1.20

Table 5: Hyper-parameters with different validation sets for COLOURED MNIST

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (PGI) 99.05 ± 0.08 98.58 ± 0.06 98.48 ± 0.05 89.42 ± 1.95
NS (PGI) 99.31 ± 0.05 98.21 ± 0.26 97.54 ± 0.41 76.00 ± 4.06
NS+ID (PGI) 99.30 ± 0.07 98.31 ± 0.27 97.48 ± 0.45 76.07 ± 5.67
ID only (PGI) 99.69 ± 0.03 63.62 ± 2.05 58.18 ± 2.05 11.81 ± 1.89

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

NS: Hyper-parameters are picked using only the validation set for non-systematic distributional shift
(which consists of backgrounds that are different from those in the training set and test sets). This
models the situation where we have access to some data that is different from our training data, and is
also considered somewhat representative of any shifts we might encounter.

NS + ID: Hyper-parameters are picked using an (equally-weighted) average of the NS and the
in-distribution validation sets. If we have prior knowledge of the likelihood of encountering data
from out-distributions in the wild, we could use this prior to use an appropriately sampled validation
set for hyper-parameter optimisation.

ID ONLY: Hyper-parameters are picked using only the in-distribution validation set.

We show results for the different schemes for our method in Tables 5, 6, 7. While the accuracies
under distributional shift are, as expected, less strong than in the previous set of results (NS+S in the
tables), we still find improvements over the reference model, indicating that one can still achieve an
improved classifier.

In Appendix D, we show similar results with all methods, and include only the best performing
method for both generalisation under systematic and non-systematic shift corresponding to the
different validation strategies in the tables in this section.

Table 6: Hyper-parameters with different validation sets for COCO-ON-COLOURS

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (PGI) 78.23 ± 2.01 55.57 ± 4.60 51.62 ± 3.09 18.84 ± 2.11
NS (PGI) 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25
NS+ID (PGI) 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25
ID only (cMMD) 92.51 ± 0.41 44.59 ± 3.28 10.48 ± 0.98 6.05 ± 0.23

Base (ERM) 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08
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Table 7: Hyper-parameters with different validation sets for COCO-ON-PLACES

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
NS (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
NS+ID (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
ID only (PGI) 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

6 CONCLUSION

Our experiments investigate the potential usefulness of invariance penalties and methods at improving
performance under distributional shift, such as systematic generalisation and semantic anomaly
detection.

While our exploratory experiments are conducted in disambiguated synthetic setups, next steps
would involve investigating the potential for extending these approaches to real datasets used in the
field. Since such methods cannot work when spurious correlations are completely pervasive, it is
important to include sufficient diversity of data sources and curation in order to be able to reap the
advantages such techniques can afford us in real world applications. We note that peculiarities in
datasets and problems might give rise to different potential failings at robustness, calling for more
targeted invariance methods.

We find that our method of learning features that result in matched predictive behaviour throughout
training appears to hold promise at handling certain distributional shifts, although it does not always
perform best across different validation schemes. A practical line of inquiry would be the question of
how to make trade-offs in performance between in-distribution and unexpected situations.
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relevant. Real-world problems might call for more targeted invariance methods.
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Thank you!


