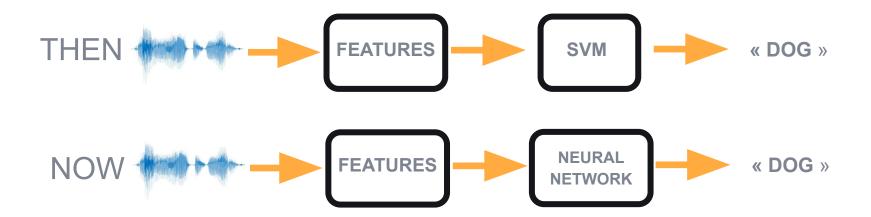
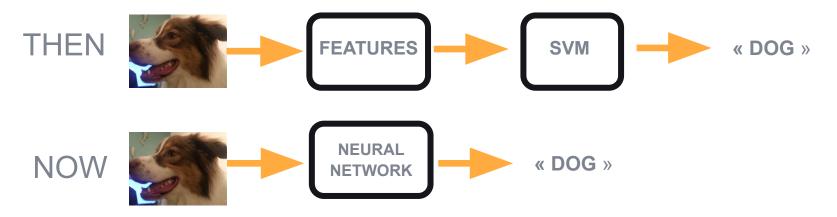
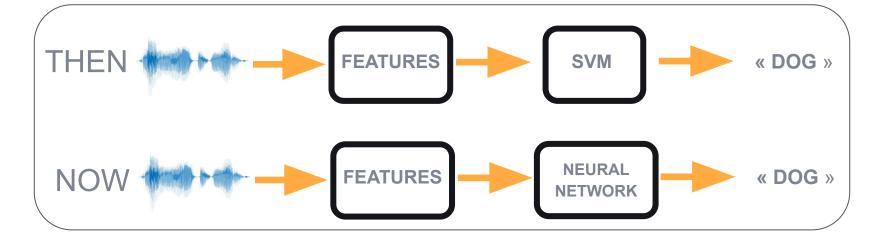

LEAF: A Learnable Frontend for Audio Classification

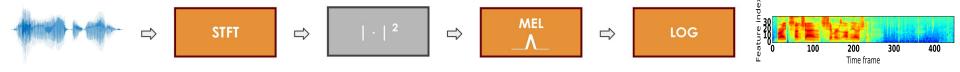

Neil Zeghidour, Olivier Teboul, Félix de Chaumont-Quitry, Marco Tagliasacchi Google Research

Computer vision vs audio classification

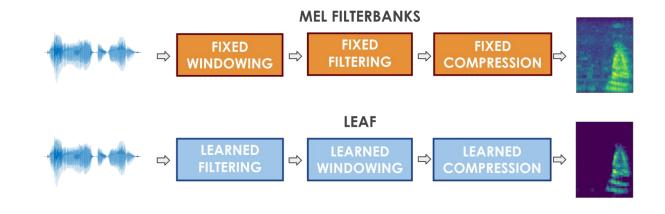




Computer vision vs audio classification



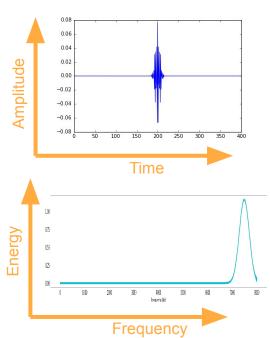
Standard audio features: mel-filterbanks


- Typical features are mel-filterbanks, that replicate human perception:
- Compute a spectrogram
- Pass it through mel(odic) filters (log sensitivity to pitch)
- Pass it through a logarithmic compression (log sensitivity to loudness)

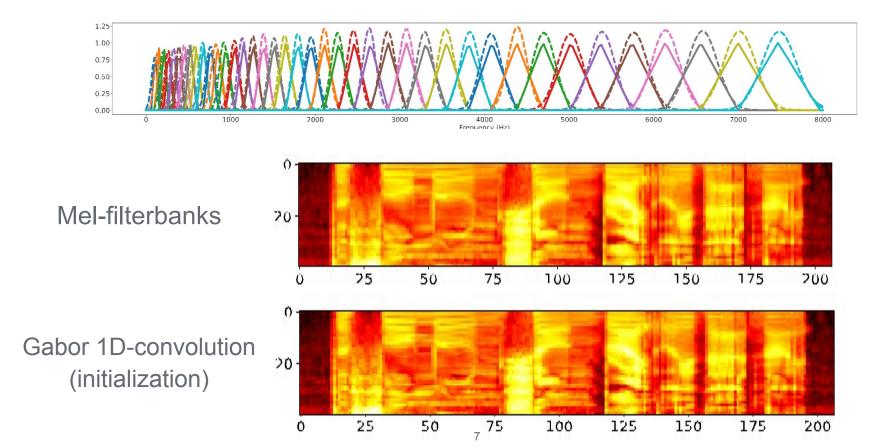
- · Limitations:
 - Many banks of filters, compressions have been proposed
 - Not clear when matching human perception is good
- ·Solution:
 - **Test several combinations with trial and error**
 - **Let the neural network learn all these operations**

LEAF: A LEarnable Audio Frontend

Learning filtering: Gabor 1D-convolution

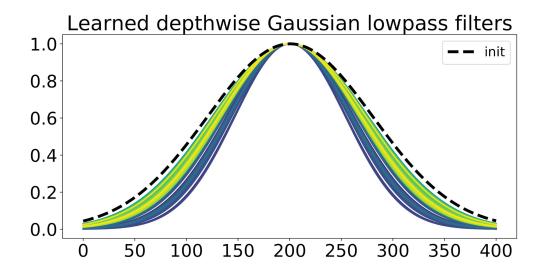

A Gabor filter has the following expression in time domain:

$$\varphi_n(t) = e^{i2\pi\eta_n t} \frac{1}{\sqrt{2\pi}\sigma_n} e^{-\frac{t^2}{2\sigma_n^2}}$$


And in frequency domain:

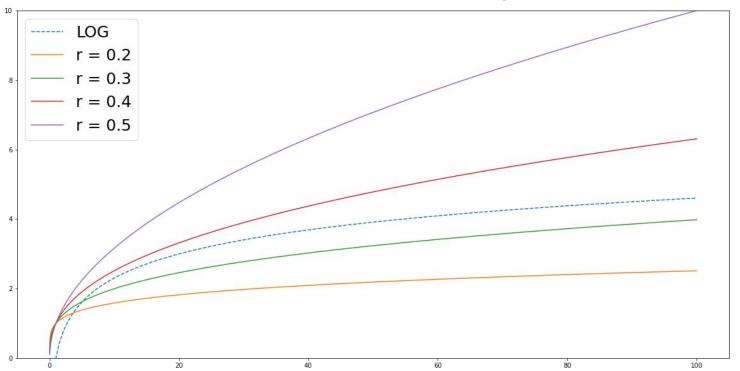
$$\hat{\varphi}_n(\xi) \propto \sqrt{\sigma_n} e^{-\frac{1}{2}\sigma_n^2(\xi - \eta_n)^2}$$

We learn its center and bandwidth



We can approximate the mel scale and then learn a new scale

Windowing: Channelwise Gaussian Pooling


- We learn the width of the windowing function
- •The wider the window, the more we remove high frequencies

8 P8

Learning the compression

- •Instead of a logarithm we can learn the "r" in x^(1/r)
- •We can learn to compress more or less than a logarithm

Classification performance

- Train a model to recognize many kinds of sounds at once
- Metric: accuracy (% of time we predict the right category)
- LEAF outperforms on average
- But mel filterbanks are a very strong baseline

Table 3: Test accuracy (%) for multi-task classification.

Task	Mel	TD-fbanks	SincNet	LEAF
Acoustic scenes	99.1 ± 0.5	98.3 ± 0.6	91.0 ± 1.4	98.9 ± 0.5
Birdsong detection	81.3 ± 0.9	82.3 ± 0.9	78.8 ± 0.9	81.9 ± 0.9
Emotion recognition	24.1 ± 2.1	24.4 ± 2.1	26.2 ± 2.1	31.9 ± 2.3
Speaker Id. (LBS)	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0
Music (instrument)	70.7 ± 0.6	66.3 ± 0.6	67.4 ± 0.6	70.2 ± 0.6
Music (pitch)	88.5 ± 0.4	86.4 ± 0.4	81.2 ± 0.5	88.6 ± 0.4
Speech commands	93.6 ± 0.3	89.5 ± 0.4	91.4 ± 0.4	93.6 ± 0.3
Language Id.	64.9 ± 0.5	58.9 ± 0.5	60.8 ± 0.5	69.6 ± 0.5
Average	77.8 ± 0.7	75.8 ± 0.7	74.6 ± 0.8	79.3 ± 0.7

Large scale audio classification

- AudioSet = 1M audio sequences from 527 classes
- We report AUC and d-prime averaged over classes (multi-label classification)

Table 4: Test AUC and d-prime on Audioset, with the number of learnable parameters per frontend.

		EfficientNetB0		CNN14 (ours)		CNN14 (Kong et al., 2019)	
Frontend	#Params	AUC	d-prime	AUC	d-prime	AUC	d-prime
Mel	0	0.966	2.58	0.973	2.72	0.973	2.73
Mel-PCEN	256	0.966	2.58	0.973	2.72	_	-
Wavegram	$300\mathrm{k}$	0.950	2.34	0.962	2.51	0.968	2.61
TD-fbanks	$51\mathrm{k}$	0.962	2.50	0.972	2.70	.=	_
SincNet	256	0.959	2.47	0.970	2.66	.=	_
SincNet+	448	0.966	2.58	0.973	2.72	-	-
LEAF	448	0.969	2.63	0.974	2.74	2 -	-

Meet us at our poster!

- Poster session 1
- May 3rd, 2021 1am-3am (PDT)
- We released our code on github:

https://github.com/google-research/leaf-audio/tree/master/leaf_audio

12 P 12