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Background: Exploration is an Open Challenge for RL
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Motivation: Exploration Needs to Generalize
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*  Procedurally-Generated Environments (PCG): A new environment is generated in each

episode. The agent needs to learn to generalize.
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Motivation: Exploration Needs to Generalize

Episode 1 Episode 2 Episode 3 Episode 4

*  Procedurally-Generated Environments (PCG): A new environment is generated in each

episode. The agent needs to learn to generalize.

*  Why challenging? The agent is not likely to see a state more than once.
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Motivation: Can Intrinsic Rewards Generalize?

> Goal
1100 episodes
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Motivation: Can Intrinsic Rewards Generalize?

0.0 0.5 1.0
Intrinsic reward ' U —

> Goal
1100 episodes

10 possible observations

} Goal
1100 episodes

Procedurally-Generated

Singleton

The agent may get stuck in the third block
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Our Approach: Episode-Level Exploration
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Our Approach: Episode-Level Exploration

H Visited
L. > Goal
Not visited
Sample episodes
3 L
Episodic score = 0.25 Episodic score = 0.875
Poor exploration Good exploration

*  Assumption: Episode-level exploration scores can better generalize.
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A New Exploration Strategy that Can Generalize

* Episode-Level Exploration: We propose Exploration via Ranking the Episodes (RAPID)
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A New Exploration Strategy that Can Generalize

* Episode-Level Exploration: We propose Exploration via Ranking the Episodes (RAPID)

Step 1: Scoring
Episodes
Standard RL P r
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A New Exploration Strategy that Can Generalize

* Episode-Level Exploration: We propose Exploration via Ranking the Episodes (RAPID)
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A New Exploration Strategy that Can Generalize

* Episode-Level Exploration: We propose Exploration via Ranking the Episodes (RAPID)

Step1: Scoring
Episod
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Environment / < Global Score
Extrinsic Reward [* Rank with episodic scores
Intereaction -
L K
é a a
[mitation Learning E E
RL Update Step 3: Imitation | Score=0.99 Score = 0.98 5
S J
Ranking Buffer
Step 2: Ranking

Texas A&M University

Department of Computer Science and Engineering



New SOTA on MiniGrid Benchmarks

(a) MultiRoom-N7-S4 (b) MultiRoom-N10-S4 (c) MultiRoom-N7-S8  (d) MultiRoom-N10-S10

(e) KeyCorridor-S3-R2  (f) KeyCorridor-S3-R3 (g) KeyCorridor-S4-R3  (h) MultiRoom-N12-S10
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New SOTA on MiniGrid Benchmarks

= RAPID RIDE AMIGO === CURIOSITY === RANDOM COUNT SIL PPO
1.0 0.8
o6 0.8 0.6
- 0.6
0.6
s, 0 0.4
Z 04 0.4 e
g
0.2 0.2 0.2 0.2
0.0 - 0.0
0.0 0.0
—-0.2 -0.2
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
timesteps le7 timesteps le7 timesteps le7 timesteps le7

(a) MultiRoom-N7-S4 (b) MultiRoom-N10-S4 (c) MultiRoom-N7-S8  (d) MultiRoom-N10-S10

1.0 05
1.00
s 0.8 0.4 0.6
0.75 0.6
€ 0.3 0.4
g 940 /04
= 0.25 ’/ 0.2
: 0.2 ,_,_/\qu/ 0.2
0.00 -“SJ 0.0 : 0.1
. 0.0
—0.25 0.0 mneimmhandiibadiioihl
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
timesteps le7 timesteps le7 timesteps le7 timesteps le7

(e) KeyCorridor-S3-R2 (f) KeyCorridor-S3-R3 (g) KeyCorridor-S4-R3  (h) MultiRoom-N12-S10

*  Fast: RAPID Accelerates the convergence with up to 10X.

*  Effective: RAPID is the only one that works in KeyCorridor-S4-R3.
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Code

Paper: https://openreview.net/forum?2id=MtEEOCktZht

Code: https://qgithub.com/daochenzha/rapid
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