Linear Convergent Decentralized Optimization with Compression

Xiaorui Liu

http://cse.msu.edu/~xiaorui/

Joint work with Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan

Data Science and Engineering Lab Department of Computer Science and Engineering Michigan State University

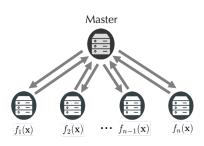
ICLR 2021, May 6th

Introduction

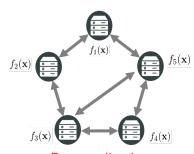
Problem

$$\mathbf{x}^* := \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} \left[f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}) \right]$$

• $f_i(\cdot)$ is the local objective in agent i.



Centralization



Decentralization

Introduction

Matrix notations

$$\mathbf{X}^{k} = \begin{bmatrix} - & (\mathbf{x}_{1}^{k})^{\top} & - \\ & \vdots & \\ - & (\mathbf{x}_{n}^{k})^{\top} & - \end{bmatrix} \in \mathbb{R}^{n \times d},$$

$$\nabla \mathbf{F}(\mathbf{X}^{k}) = \begin{bmatrix} - & (\nabla f_{1}(\mathbf{x}_{1}^{k}))^{\top} & - \\ & \vdots & \\ - & (\nabla f_{1}(\mathbf{x}_{n}^{k}))^{\top} & - \end{bmatrix} \in \mathbb{R}^{n \times d},$$

• Symmetric $\mathbf{W} \in \mathbb{R}^{n \times n}$ encodes the communication network.

$$\mathbf{WX} = \mathbf{X} \quad \text{iff} \quad \mathbf{x}_1 = \mathbf{x}_2 = \dots = \mathbf{x}_n,$$
$$-1 < \lambda_n(\mathbf{W}) \le \lambda_{n-1}(\mathbf{W}) \le \dots \lambda_2(\mathbf{W}) < \lambda_1(\mathbf{W}) = 1.$$

Xiaorui Liu (MSU) LEAD ICLR 2021 3/15

Introduction

- Communication Compression for decentralized optimization
 - DCD-SGD, ECE-SGD [TGZ⁺18]
 - QDGD, QuanTimed-DSGD[RMHP19, RTM+19]
 - DeepSqueeze [TLQ+19]
 - CHOCO-SGD [KSJ19]
 - ...
- Reduce to DGD-type algorithms, which suffer from convergence bias

$$\mathbf{X}^* \neq \mathbf{W}\mathbf{X}^* - \eta \nabla \mathbf{F}(\mathbf{X}^*).$$

Their convergences degrade on heterogeneous data.

 LEAD is the first primal-dual decentralized optimization algorithm with compression and attains linear convergence.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

4 / 15

Algorithm: LEAD

• NIDS [LSY19] / D² [TLY⁺18] (stochastic version of NIDS)

$$\mathbf{X}^{k+1} = \frac{\mathbf{I} + \mathbf{W}}{2} (2\mathbf{X}^k - \mathbf{X}^{k-1} - \eta \nabla \mathbf{F}(\mathbf{X}^k; \xi^k) + \eta \nabla \mathbf{F}(\mathbf{X}^{k-1}; \xi^{k-1})),$$

A two step reformulation [LY19]:

$$\begin{split} \mathbf{D}^{k+1} &= \mathbf{D}^k + \frac{\mathbf{I} - \mathbf{W}}{2\eta} (\mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k) - \eta \mathbf{D}^k), \\ \mathbf{X}^{k+1} &= \mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k) - \eta \mathbf{D}^{k+1}, \end{split}$$

Concise and conceptual form of LEAD:

$$\begin{split} \mathbf{Y}^k &= \mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k; \boldsymbol{\xi}^k) - \eta \mathbf{D}^k \\ \hat{\mathbf{Y}}^k &= CompressionProcedure(\mathbf{Y}^k) \\ \mathbf{D}^{k+1} &= \mathbf{D}^k + \frac{\gamma}{2\eta} (\mathbf{I} - \mathbf{W}) \hat{\mathbf{Y}}^k \\ \mathbf{X}^{k+1} &= \mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k; \boldsymbol{\xi}^k) - \eta \mathbf{D}^{k+1} \end{split}$$

Algorithm: LEAD

LEAD

$$\begin{aligned} \mathbf{Y}^k &= \mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k; \boldsymbol{\xi}^k) - \eta \mathbf{D}^k \\ \hat{\mathbf{Y}}^k &= CompressionProcedure(\mathbf{Y}^k) \\ \mathbf{D}^{k+1} &= \mathbf{D}^k + \frac{\gamma}{2\eta} (\mathbf{I} - \mathbf{W}) \hat{\mathbf{Y}}^k = \frac{\gamma}{2\eta} (\hat{\mathbf{Y}}^k - \hat{\mathbf{Y}}^k_w) \\ \mathbf{X}^{k+1} &= \mathbf{X}^k - \eta \nabla \mathbf{F}(\mathbf{X}^k; \boldsymbol{\xi}^k) - \eta \mathbf{D}^{k+1} \end{aligned}$$

Compression Procedure

$$\begin{aligned} \mathbf{Q}^k &= \mathsf{Compress}(\mathbf{Y}^k - \mathbf{H}^k) \quad \rhd \; \textit{Compression} \\ \mathbf{\hat{Y}}^k &= \mathbf{H}^k + \mathbf{Q}^k \\ \mathbf{\hat{Y}}^k_w &= \mathbf{H}^k_w + \mathbf{W}\mathbf{Q}^k \quad \rhd \; \textit{Communication} \\ \mathbf{H}^{k+1} &= (1-\alpha)\mathbf{H}^k + \alpha\mathbf{\hat{Y}}^k \\ \mathbf{H}^{k+1}_w &= (1-\alpha)\mathbf{H}^k_w + \alpha\mathbf{\hat{Y}}^k_w \end{aligned}$$

Algorithm: LEAD

How LEAD works?

Gradient Correction

$$egin{aligned} \mathbf{X}^{k+1} &= \mathbf{X}^k - \eta(
abla \mathbf{F}(\mathbf{X}^k; \xi^k) + \mathbf{D}^{k+1}) \ & \mathbf{F}(\mathbf{X}^k; \xi^k) + \mathbf{D}^{k+1}
ightarrow \mathbf{0} \end{aligned}$$

• Difference Compression

$$\begin{aligned} \mathbf{Q}^k &= \mathsf{Compress}(\mathbf{Y}^k - \mathbf{H}^k) \\ \mathbf{Y}^k &\to \mathbf{X}^*, \mathbf{H}^k \to \mathbf{X}^* \Rightarrow \mathbf{Y}^k - \mathbf{H}^k \to \mathbf{0} \Rightarrow \|\mathbf{Q}^k - (\mathbf{Y}^k - \mathbf{H}^k)\| \to 0 \end{aligned}$$

Implicit Error Compensation

$$\mathbf{E}^k = \hat{\mathbf{Y}}^k - \mathbf{Y}^k$$

$$\mathbf{D}^{k+1} = \mathbf{D}^k + \frac{\gamma}{2\eta} (\hat{\mathbf{Y}}^k - \hat{\mathbf{Y}}_w^k) = \mathbf{D}^k + \frac{\gamma}{2\eta} (\mathbf{I} - \mathbf{W}) \mathbf{Y}^k + \frac{\gamma}{2\eta} (\mathbf{E}^k - \mathbf{W} \mathbf{E}^k)$$

Assumption

- Compression: $\mathbb{E}Q(\mathbf{x}) = \mathbf{x}$, $\mathbb{E}\|\mathbf{x} Q(\mathbf{x})\|_2^2 \le C\|\mathbf{x}\|_2^2$ for some $C \ge 0$.
- $f_i(\cdot)$ is μ -strongly convex and L-smooth:

$$f_i(\mathbf{x}) \geq f_i(\mathbf{y}) + \langle \nabla f_i(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}\|^2,$$

$$f_i(\mathbf{x}) \leq f_i(\mathbf{y}) + \langle \nabla f_i(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

• Gradient: $\mathbb{E}_{\xi} \nabla f_i(\mathbf{x}; \xi) = \nabla f_i(\mathbf{x}), \ \mathbb{E}_{\xi} \|\nabla f_i(\mathbf{x}; \xi) - \nabla f_i(\mathbf{x})\|_2^2 \leq \sigma^2.$

4 D > 4 B > 4 E > 4 E > E 990

Theory

$$\kappa_f = rac{L}{\mu}, \quad \kappa_g = rac{\lambda_{\sf max}({f I} - {f W})}{\lambda^+_{\sf min}({f I} - {f W})}$$

Theorem (Complexity bounds when $\sigma = 0$)

• LEAD converges to the ϵ -accurate solution with the iteration complexity

$$\mathcal{O}\Big(\big((1+C)(\kappa_f+\kappa_g)+C\kappa_f\kappa_g\big)\log\frac{1}{\epsilon}\Big).$$

• When C=0 (i.e., no compression) or $C \leq \frac{\kappa_f + \kappa_g}{\kappa_f \kappa_g + \kappa_f + \kappa_g}$, the iteration complexity is $\mathcal{O}\left(\left(\kappa_f + \kappa_g\right) \log \frac{1}{\epsilon}\right)$.

This recovers the convergence rate of NIDS [LSY19].

Theory

Theorem (Complexity bounds when $\sigma = 0$)

• With C = 0 (or $C \le \frac{\kappa_f + \kappa_g}{\kappa_f \kappa_\sigma + \kappa_f + \kappa_\sigma}$) and fully connected communication graph (i.e., $\mathbf{W} = \frac{\mathbf{1}\mathbf{1}^{\top}}{n}$), the iteration complexity is

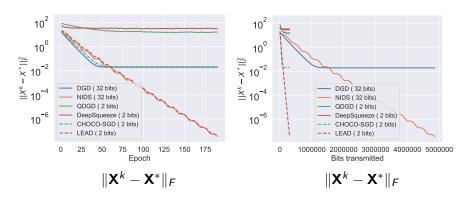
$$\mathcal{O}(\kappa_f \log \frac{1}{\epsilon}).$$

This recovers the convergence rate of gradient descent [Nes13].

Theorem (Error bound when $\sigma > 0$)

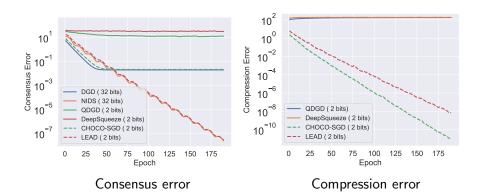
$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left\|\mathbf{x}_{i}^{k}-\mathbf{x}^{*}\right\|^{2}\lesssim\mathcal{O}\left(\frac{1}{k}\right)$$

10 / 15



Linear regression ($\sigma = 0$)

Xiaorui Liu (MSU) LEAD ICLR 2021 11/15

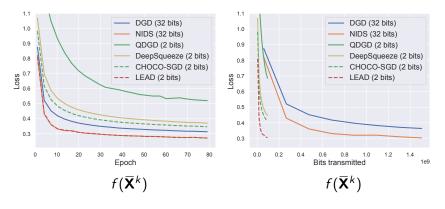


Linear regression ($\sigma = 0$)

4□ b 4 □

12 / 15

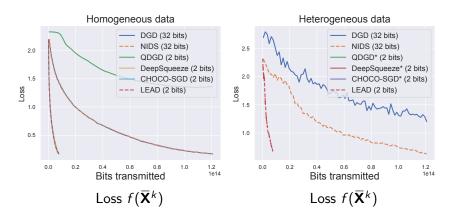
Xiaorui Liu (MSU) LEAD ICLR 2021



Logistic regression ($\sigma > 0$).

→□▷ →□▷ → □▷ → □▷ → □○

13 / 15



Stochastic optimization on deep learning (* divergence).

Xiaorui Liu (MSU) LEAD ICLR 2021 14 / 15

Conclusion

- LEAD is the first primal-dual decentralized optimization algorithm with compression and attains linear convergence for strongly convex and smooth objectives
- LEAD supports unbiased compression of arbitrary precision
- LEAD works well for nonconvex problems such as training deep neural networks
- LEAD is robust to parameter settings, and needs minor effort for parameter tuning

Welcome to check our paper and poster for more details

- Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi, Decentralized stochastic optimization and gossip algorithms with compressed communication, Proceedings of the 36th International Conference on Machine Learning, PMLR, 2019, pp. 3479–3487.
- Zhi Li, Wei Shi, and Ming Yan, A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates, IEEE Transactions on Signal Processing 67 (2019), no. 17, 4494–4506.
- Yao Li and Ming Yan, On linear convergence of two decentralized algorithms, arXiv preprint arXiv:1906.07225 (2019).
- Yurii Nesterov, Introductory lectures on convex optimization: A basic course, vol. 87, Springer Science & Business Media, 2013.
 - Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani, *An exact quantized decentralized gradient descent algorithm*, IEEE Transactions on Signal Processing **67** (2019), no. 19, 4934–4947.

- Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani, *Robust and communication-efficient collaborative learning*, Advances in Neural Information Processing Systems, 2019, pp. 8388–8399.
- Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu, Communication compression for decentralized training, Advances in Neural Information Processing Systems, 2018, pp. 7652–7662.
- Hanlin Tang, Xiangru Lian, Shuang Qiu, Lei Yuan, Ce Zhang, Tong Zhang, and Ji Liu, *Deepsqueeze: Decentralization meets error-compensated compression*, CoRR abs/1907.07346 (2019).
- Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu, D^2 :

 Decentralized training over decentralized data, Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 4848–4856.