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Introduction

@ Problem

x* := arg min [f(x) = 1 Z f,-(x)}

xcRd =1
e fi() is the local objective in agent i.

Master

X fn fn

Centralization Decentralization
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Introduction

@ Matrix notations

[ — )T —
Xk: ER”XC[,
— (x8)"
[ — (VA" —
VF(X¥) = ; e R,
L (VAT —

@ Symmetric W € R"*" encodes the communication network.
WX =X iff xgy =xp=--- =X,

—1 < An(W) < Ap1(W) < - Xa(W) < A (W) = 1.
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Introduction

@ Communication Compression for decentralized optimization
DCD-SGD, ECE-SGD [TGZ*18]

QDGD, QuanTimed-DSGD[RMHP19, RTM*19]
DeepSqueeze [TLQT19]

CHOCO-SGD [KSJ19]

@ Reduce to DGD-type algorithms, which suffer from convergence bias
X* # WX* — nVF(X*).

Their convergences degrade on heterogeneous data.

@ LEAD is the first primal-dual decentralized optimization algorithm
with compression and attains linear convergence.
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Algorithm: LEAD

e NIDS [LSY19] / D? [TLY*18] (stochastic version of NIDS)

1+ W
Xk+1 — %(2xk o Xk*l o HVF(Xk, ék) 4 77v[:(xkfl; gkfl))’

@ A two step reformulation [LY19]:
I-W
2n
X+ = XK — pVF(X¥) — nD**1,

Dt = DX + ——(X* — nVF(X*) —D"),

@ Concise and conceptual form of LEAD:
Y* = X< —VF(XK; £F) — nD*
Y¥ = CompressionProcedure(Y*)
DXl = DK + %(I _ W)Qk
Xk+L = XK — WF(XK; €k) — pDk+
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Algorithm: LEAD

e LEAD
Y* = X< —nVF(XK; £) — nD*
Y = CompressionProcedure(Y*)
Dt — Dk + %(I —W)Y= %(?k —YE)
XK+ = XK — VF(XK; €KY — pDF+
@ Compression Procedure

Q* = Compress(Y*X — H*) > Compression
VK = HX + Q*
YE = HE +wQk > Communication
H L = (1 — a)H* + oYk
HH = (1 — @)HE + oYk
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Algorithm: LEAD

How LEAD works?

@ Gradient Correction
XK+ = XK — p(VE(XK; €KY + DR

F(X*;¢)+ D' =0

o Difference Compression
QX = Compress(Y* — H¥)
Yo X HE 5 X = Y —H = 0= |Q% — (Y- H¥)|| -0
@ Implicit Error Compensation
EF — Yk _ Yk
Dkt — D* 4 %(W —Yk)=Dk+ %(I — W)Y+ %(Ek — WE)
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e Compression: EQ(x) = x, E|jx — Q(x)||3 < C||x||3 for some C > 0.
e fi(-) is p-strongly convex and L-smooth:

(%) 2 £i(y) + (VA(y). x —y) + Slx — [,
() < (y) + (V(y) x ) + 5 x— ¥l

e Gradient: E¢VFfi(x; &) = VFi(x), E¢||VFi(x; £) — VFA(x)|3 < o2.
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L Amax(1 — W)

Kf = —, Hg:)\+

min

(I-w)

Theorem (Complexity bounds when o = 0)

@ LEAD converges to the e-accurate solution with the iteration
complexity

(’)(((1 + C)(kf + kg) + Crkg) log %)

KftKg
Kfkgtrftrg’

(’)((Hf + Kg) log %)

This recovers the convergence rate of NIDS [LSY19].

e When C =0 (i.e., no compression) or C <
complexity is

the iteration
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Theorem (Complexity bounds when o = 0)

o _ /{f+,bg o 5
e With C=0 (or C < m) and fully connected communication

. T . : e
graph (i.e., W = %) the iteration complexity is

1
O(nflog;).

This recovers the convergence rate of gradient descent [Nes13].

Theorem (Error bound when o > 0)

xK — x*

1 n
- E‘

2 1
< -
<o(3)
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Experiment
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Experiment
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Experiment
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Stochastic optimization on deep learning (* divergence).
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Conclusion

@ LEAD is the first primal-dual decentralized optimization algorithm
with compression and attains linear convergence for strongly convex
and smooth objectives

@ LEAD supports unbiased compression of arbitrary precision

@ LEAD works well for nonconvex problems such as training deep neural
networks

@ LEAD is robust to parameter settings, and needs minor effort for
parameter tuning

Welcome to check our paper and poster for more details
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