Debiasing Concept-based Explanations with Causal Analysis

Taha Bahadori & David Heckerman May 3, 2021

Amazon

Incorporating Domain Knowledge via Concepts

- Concepts allows analysis of models on complex manifolds.
- Concepts bring domain knowledge into the explanation process.

Confounding and Noise Bias in Concept-Based Explanations

Spearman correlation coefficients (ρ) of the predictors of the concepts given features $\hat{c}(x)$ and labels $\hat{c}(y)$.

 $\widehat{c}(x)$ captures spurious correlation and isn't just predictive of y.

Causal Prior Graph for the Case without Confounding

Generative model:

- Generate labels y randomly.
- Generate concepts $\mathbf{c} \sim p(\mathbf{c}|\mathbf{y})$.
- Generate images from concepts $\mathbf{x} \sim p(\mathbf{x}|\mathbf{c})$.

Drawbacks:

- No shared context information between \boldsymbol{x} and $\boldsymbol{c}.$
- Concept completeness

A More Realistic Causal Prior Graph

- Latent variable u represents the shared context between x and c.
- Discriminative concept vector d
- Direct $x \leftarrow y$ to capture the residual correlation between x and y

A Technique from Instrumental Variables

– An estimate for the discriminative concepts $\widehat{d}=\textit{E}[c|y].$ – $u\perp\!\!\!\perp y\Longrightarrow u\perp\!\!\!\perp \widehat{d}$

Our prediction of concepts $\widehat{c}(x)$ can be uncertain. Incorporate uncertainty into $\widehat{y}(x) = \widehat{y}(\widehat{c}(x))$.

To incorporate the uncertainty in our estimation:

$$E[\mathbf{y}|\mathbf{x}] = E[g_{\theta}(\widehat{\mathbf{d}})|\mathbf{x}] = \int g_{\theta}(\mathbf{d}) \mathrm{d}p_{\phi}(\mathbf{d} = \mathbf{d}|\mathbf{x}),$$

The integral is computed using Monte Carlo method.

Our causal prior graph with linear transformations:

- Generate *n* vector pairs $\mathbf{y}_i, \mathbf{u}_i \in \mathbb{R}^{100}$ with elements $\sim \mathcal{N}(0, 1)$.
- Generate *n* noise vector pairs $\varepsilon_{c,i}, \varepsilon_{x,i} \in \mathbb{R}^{100}$ with elements $\sim \mathcal{N}(0, \sigma = 0.02)$.
- Generate matrices $W_{y \to d}$, $W_{u \to c}$, $W_{d \to x}$, $W_{u \to x} \in \mathbb{R}^{100 \times 100}$ with elements $\sim \mathcal{N}(0, \sigma = 0.1)$.
- Compute $d_i = W_{y \rightarrow d}y_i + \varepsilon_{d,i}$ for $i = 1, \dots, n$.
- Compute $c_i = d_i + W_{u \to c} u_i$ for $i = 1, \dots, n$.
- Compute $\mathbf{x}_i = \mathbf{W}_{\mathbf{d} \to \mathbf{x}} \mathbf{d}_i + \mathbf{W}_{\mathbf{u} \to \mathbf{x}} \mathbf{u}_i + \boldsymbol{\varepsilon}_{\mathbf{x}, i}$ for $i = 1, \dots, n$.

orthogonal $(W_{y \to d} \perp W_{u \to c}, W_{u \to x})$

Regular design

CUB-200-2011 Data

winter wren

downy woodpecker

bohemian waxwing

- 11788 pictures (in 5994/5794 train/test partitions)
- 200 different types of birds
- Annotations for each picture: bird type and 312 different concepts.
- Randomly choose 15% of the training set as the validation set.

Examples of concepts:

- has_bill_shape::dagger, has_bill_shape::needle
- has_wing_color::purple, has_wing_color::blue
- has_breast_pattern::solid, has_breast_pattern::spotted

ROAR Evaluation

Top-5 accuracy of label prediction improved from 39.5% to 49.3%.

ROAR: RemOve And Retrain

– Mask bottom x% of concepts and retrain the $\mathbf{c} \rightarrow \mathbf{y}$ predictor. $_{10/10}$