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Incorporating Domain Knowledge via Concepts

Rose Breasted
Grosbeak

has throat color::black
has forehead color::black
has crown color::black
has breast color::red
has belly color::white
has underparts color::white
has underparts color::red
has back color::black
has primary color::white
has bill shape::cone
has breast pattern::multi-colored
has primary color::red

Features Concepts Labels

– Concepts allows analysis of models on complex manifolds.
– Concepts bring domain knowledge into the explanation process.
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Confounding and Noise Bias in Concept-Based Explanations

Spearman correlation coefficients (ρ) of the predictors of the
concepts given features ĉ(x) and labels ĉ(y).
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ĉ(x) captures spurious correlation and isn’t just predictive of y. 2/10



Causal Prior Graph for the Case without Confounding
Ideal Graphical Model

Estimation
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Generative model:

– Generate labels y randomly.
– Generate concepts c ∼ p(c|y).
– Generate images from concepts x ∼ p(x|c).

Drawbacks:

– No shared context information between x and c.
– Concept completeness
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A More Realistic Causal Prior GraphRealistic Graphical Model
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– Latent variable u represents the shared context between x and c.
– Discriminative concept vector d
– Direct x← y to capture the residual correlation between x and y
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A Technique from Instrumental Variables
Realistic Graphical Model
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– An estimate for the discriminative concepts d̂ = E[c|y].
– u ⊥⊥ y =⇒ u ⊥⊥ d̂
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Incorporating Concept Prediction Uncertainty

Our prediction of concepts ĉ(x) can be uncertain. Incorporate
uncertainty into ŷ(x) = ŷ(ĉ(x)).

To incorporate the uncertainty in our estimation:

E[y|x] = E[gθ(d̂)|x] =
∫
gθ(d)dpϕ(d = d|x),

The integral is computed using Monte Carlo method.
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Synthetic Data

Our causal prior graph with linear transformations:

– Generate n vector pairs yi,ui ∈ R100 with elements ∼ N (0, 1).
– Generate n noise vector pairs εc,i, εx,i ∈ R100 with elements
∼ N (0, σ = 0.02).

– Generate matrices Wy→d,Wu→c,Wd→x,Wu→x ∈ R100×100 with
elements ∼ N (0, σ = 0.1).

– Compute di = Wy→dyi + εd,i for i = 1, . . . ,n.
– Compute ci = di +Wu→cui for i = 1, . . . ,n.
– Compute xi = Wd→xdi +Wu→xui + εx,i for i = 1, . . . ,n.
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Results
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CUB-200-2011 Data

– 11788 pictures (in 5994/5794 train/test partitions)
– 200 different types of birds
– Annotations for each picture: bird type and 312 different
concepts.

– Randomly choose 15% of the training set as the validation set.

Examples of concepts:

- has_bill_shape::dagger, has_bill_shape::needle
- has_wing_color::purple, has_wing_color::blue
- has_breast_pattern::solid, has_breast_pattern::spotted
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ROAR Evaluation

Top-5 accuracy of label prediction improved from 39.5% to 49.3%.
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ROAR: RemOve And Retrain

– Mask bottom x% of concepts and retrain the c→ y predictor. 10/10


