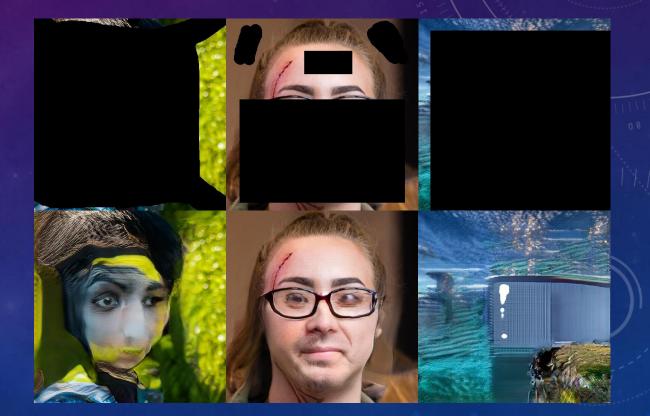
LARGE SCALE IMAGE COMPLETION VIA CO-MODULATED GENERATIVE ADVERSARIAL NETWORKS

Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I-Chao Chang, and Yan Xu

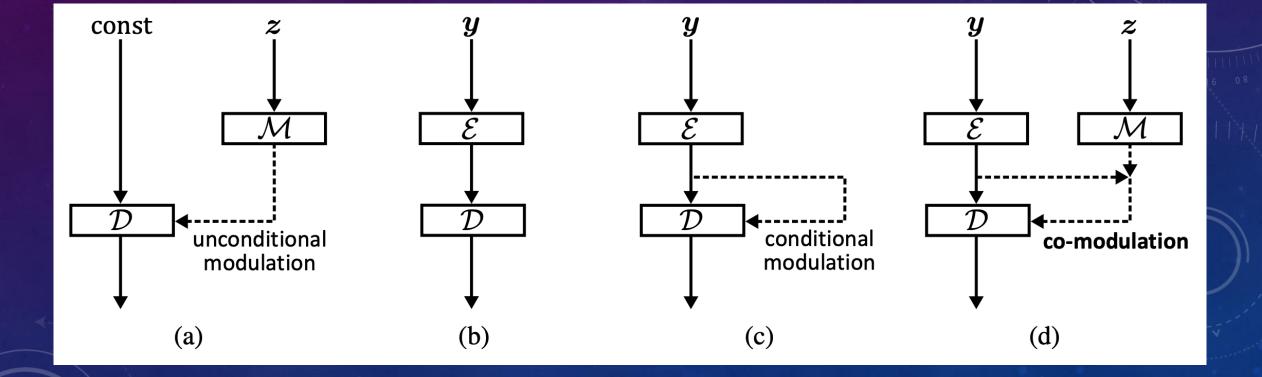
UNCONDITIONAL VS. IMAGE-CONDITIONED GENERATION

- Image completion aims at *completing* images of which certain parts have been deleted/corrupted.
- Previous methods have utilized U-Net-like architectures and the robustness of GANs to attempt the task. However, the lack — or even the absolute absence — of stochasticity led to inadequate capacity to generate *semantically plausible* results.



Yu, Jiahui, et al. "Free-form image inpainting with gated convolution." *Proceedings of the IEEE International Conference on Computer Vision*. 2019.

METHODOLOGY



QUALITATIVE RESULTS: COMODGAN

Brush Size:O	Dataset: FFHQ	~	Truncation: O 1
Fill	Clear	Next Image	Show Original

Try out our interactive demo at http://comodgan.ml/! (Currently supports desktops only)

QUALITATIVE RESULTS: COMODGAN

QUALITATIVE RESULTS: COMODGAN-OTHERS

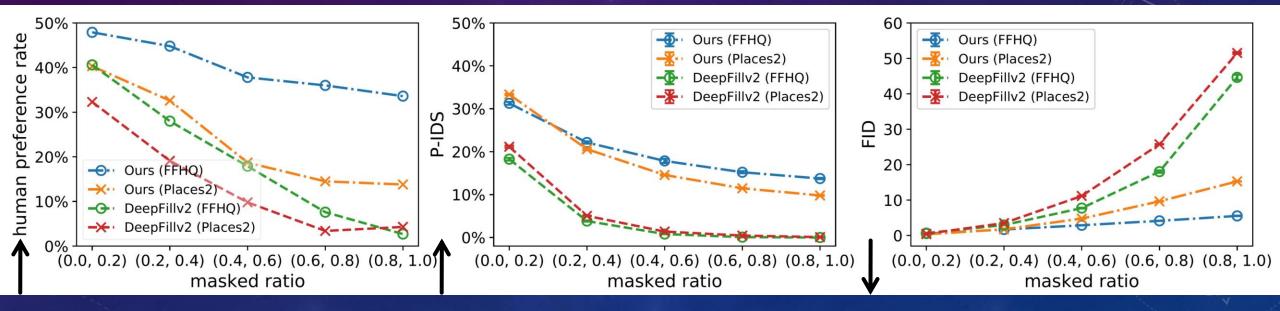
Masked

DeepFillv2 (offical)

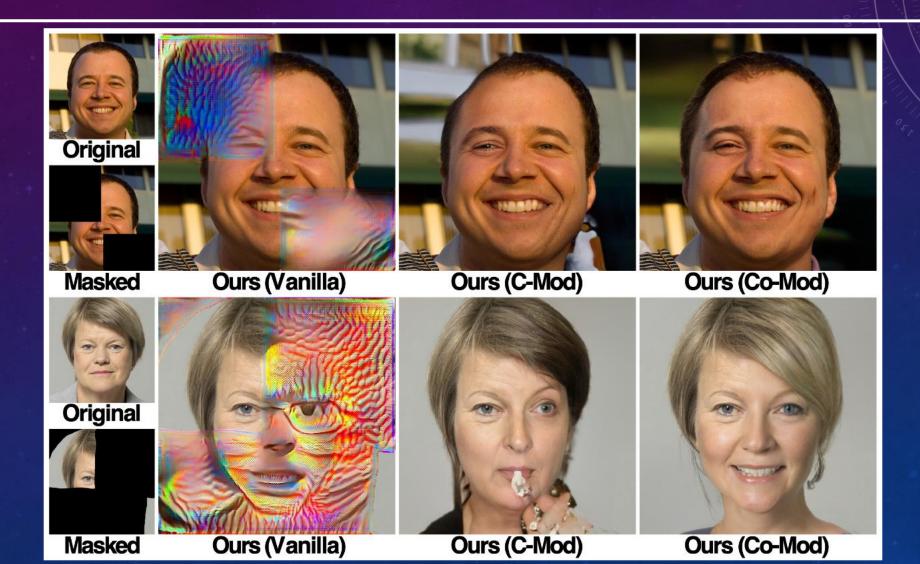
DeepFillv2 (retrained)

Ours

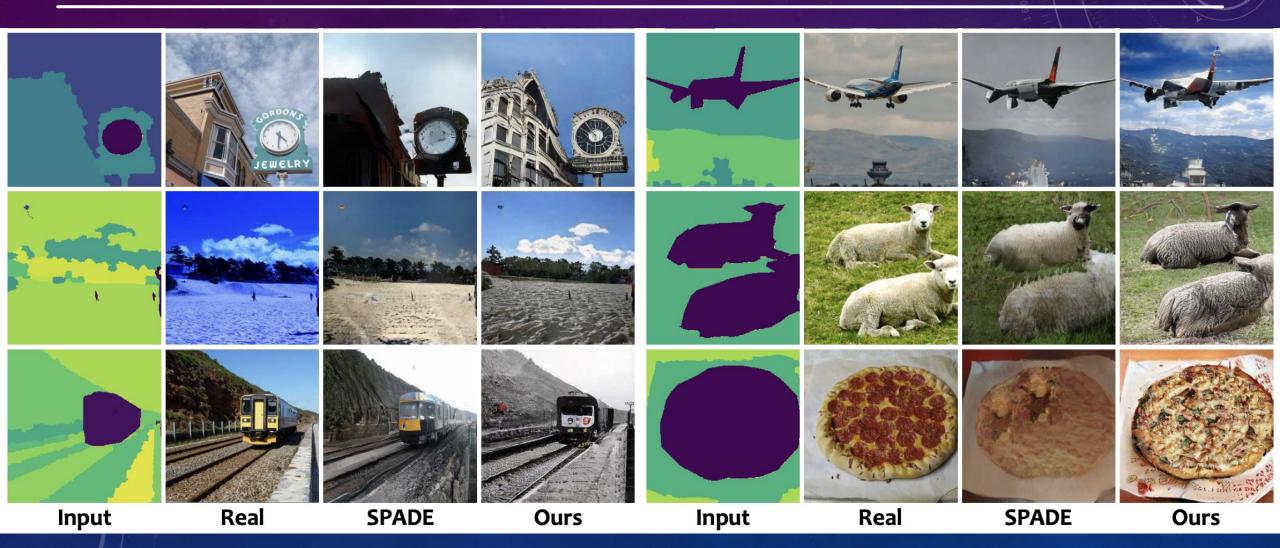
QUANTITATIVE RESULTS: COMODGAN–STATE OF THE ART



QUALITATIVE RESULTS: ABLATION STUDIES



GENERALIZATION TO IMAGE-TO-IMAGE TRANSLATION



METRICS FOR IMAGE COMPLETION: ARE THEY REASONABLE?

Unpaired metrics (e.g. FID):

• Unpaired metrics are not *strict* enough as they solely measures the difference in the distribution and completely omits the paired nature of the task.

Pixelwise discrepancies (e.g. l_1/l_2 , PSNR, SSIM):

• While pixelwise discrepancies intuitively measures the distance between the pair of true-fake images in the pixel space, it inherently favors blurry images and cannot measure the semantic difference.

METRICS FOR IMAGE COMPLETION: P-IDS & U-IDS

Inspired by the common practice of adopting **user study** as the *gold standard*, we propose Paired Inception Discriminator Score (P–IDS) and Unpaired Inception Discriminator Score (U– IDS), which measure the linear separability of the true–fake image pair in the Inception v3 feature space. Specifically,

• P-IDS reflects the probability that the trained binary SVM classifier deems the fake image more realistic than the true image in a pair:

$$\Pr_{\boldsymbol{x}, \boldsymbol{x}') \in \boldsymbol{X}} \left\{ f(\mathcal{I}(\boldsymbol{x})) > f(\mathcal{I}(\boldsymbol{x}')) \right\}.$$

• U-IDS gives the misclassification rate of the trained bilinear SVM on the features:

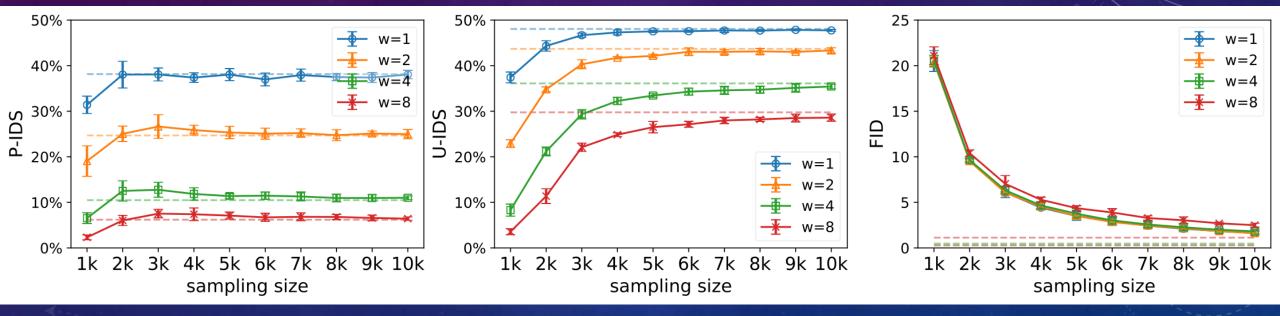
 $\frac{1}{2} \Pr_{\boldsymbol{x} \in X} \left\{ f(\mathcal{I}(\boldsymbol{x})) < 0 \right\} + \frac{1}{2} \Pr_{\boldsymbol{x}' \in X'} \left\{ f(\mathcal{I}(\boldsymbol{x}')) > 0 \right\}.$

METRICS FOR IMAGE COMPLETION: P-IDS & U-IDS

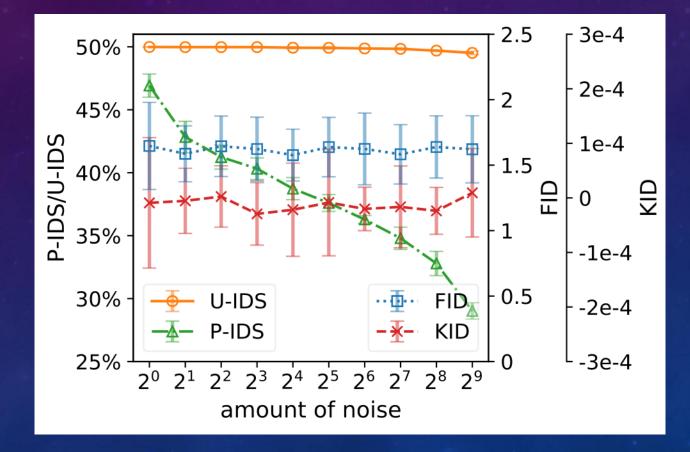
The new metrics are:

- Robust to sampling size,
- Effective of capturing subtle differences, and
- Correlated to human preferences.

METRICS FOR IMAGE COMPLETION: SAMPLING SIZE



METRICS FOR IMAGE COMPLETION: SUBTLE DIFFERENCES



METRICS FOR IMAGE COMPLETION: CORRELATION W/ HUMANS

We evaluate Pearson's correlation coefficient between the metrics and user study results. P-IDS gives r = 0.870, which is more preferable in comparison with r = -0.765 of FID.

SUMMARY

- We propose CoModGAN, a generic approach the embeds both image-conditional information and stochastic style representations.
- We propose P-IDS & U-IDS for robustly assessing the perceptual fidelity of GANs.
- Experiments demonstrate superior performance in terms of both quality and diversity in free-form image completion and easy generalization to image-to-image translation.

THANK YOU FOR LISTENING!