Learning to Deceive Knowledge Graph Augmented Models via Targeted Perturbation

Mrigank Raman, **Aaron Chan***, Siddhant Agarwal*, Peifeng Wang, Hansen Wang, Sungchul Kim, Ryan Rossi, Handong Zhao, Nedim Lipka, Xiang Ren

KG-Augmented Neural Models

extracted from ConceptNet

Figure Credit: Feng, et al., 2020

KG-Augmented Commonsense QA

Where does a child likely sit at a desk?

A. Schoolroom

- B. Furniture store
- C. Patio
- D. Office building

E. Library

Figure Credit: Feng, et al., 2020

KG-Augmented Commonsense QA

Where does a child likely sit at a desk?

A. Schoolroom

- B. Furniture store
- C. Patio
- D. Office building

E. Library

Figure Credit: Feng, et al., 2020

Question: **Do KG-augmented** models use KG info in a way that makes sense to humans?

Where does a child likely sit at a desk?

A. Schoolroom

- B. Furniture store
- C. Patio
- D. Office building
- E. Library

Experiment 1: Measure how well **KG**-augmented models perform using perturbed KGs.

downstream test

performance (original KG)

downstream test performance (perturbed KG)

performance gap = ?

Problem Setting

KG Perturbation Methods

Results: Commonsense QA

Performance on the **OBQA** dataset across various perturbation methods, using the **MHGRN** model (Feng, et al., 2020).

Surprisingly, RL-RR performs roughly as well as Original KG!

Experiment 2: Ask humans to rate KG explanation paths that KG-augmented models found helpful.

Where does a <mark>child</mark> likely <mark>sit</mark> at a desk?

A. Schoolroom

- B. Furniture store
- C. Patio
- D. Office building
- E. Library

Results: Human Evaluation

Readability/Usability of *top-scoring* paths from original KG and RL-RR, using **MHGRN** on **OBQA**.

Both readability and usability are measured on a **[0, 1] scale**.

Humans struggle to read/use explanation paths that were helpful for MHGRN.

Conclusion: No, KG-augmented models do not use KG info in a way that makes sense to humans.

Where does a child likely sit at a desk?

A. Schoolroom

- B. Furniture store
- C. Patio
- D. Office building
- E. Library

• Further analyze how existing KG-augmented models use KG info

- Further analyze how existing KG-augmented models use KG info
- Design KG-augmented models that use KG info more effectively for downstream tasks

- Further analyze how existing KG-augmented models use KG info
- Design KG-augmented models that **use KG info more effectively** for downstream tasks
- Design KG-augmented models that **produce KG explanations** which are more:
 - **plausible**: convincing to *humans*
 - **faithful**: reflective of the *model's reasoning process*

Thank You!