

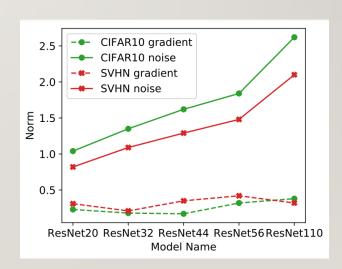
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning

Da Yu*,1, Huishuai Zhang*,2, Wei Chen2, Tie-Yan Liu2

* denotes equal contribution

¹Sun Yat-sen University

²Microsoft Research

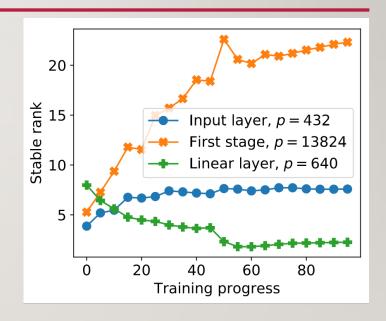

Corresponding to: yuda3@mail2.sysu.edu.cn or

<u>Huishuai.Zhang@microsoft.com</u>

BACKGROUND

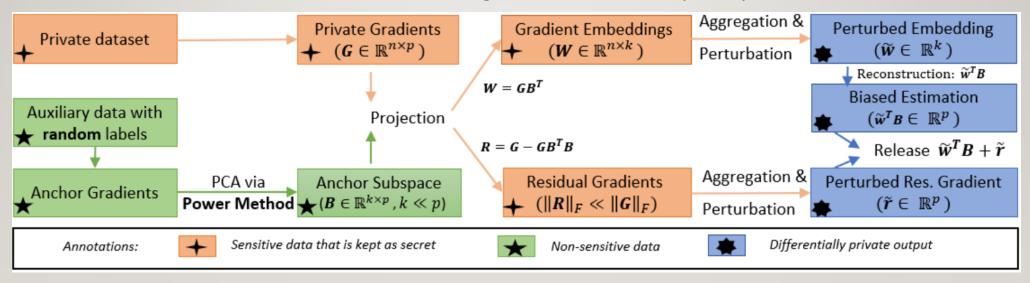
- Gradient perturbation:
 - $\tilde{g} = g + z$, $g \in \mathbb{R}^p$ and $z \sim N(0, \sigma^2 I_{p \times p})$.

- The curse of dimensionality:
 - The intensity of the added noise scales with p.



MOTIVATION

- Gradients have low stable rank!
 - Energy concentrates on low-dimensional subspace.



- Find a proper subspace for projection,
- Deal with the projection error.

METHODOLOGY OVERVIEW

Flow chart of Gradient Embedding Perturbation (GEP):

ANALYSIS OF GEP

- Compared with GP, the output of GEP
 - · has smaller variance because we use low-dimensional noise for gradient embeddings,
 - is an unbiased estimator because of the residual gradients (if without clipping).

For convex DP-ERM, we show

$$\mathbb{E}[L(\bar{\theta})] - L(\theta_*) \le O\left(\frac{\sqrt{k\log\left(\frac{1}{\delta}\right)}}{n\epsilon} + \frac{\bar{r}\sqrt{p\log\left(\frac{1}{\delta}\right)}}{n\epsilon}\right)$$

, where k is the projection dimension and $ar{r}$ denotes the norm of residual gradients.

EXPERIMENTS

GP: standard gradient perturbation.

PATE: private learning with ensemble of teachers.

B-GEP: Biased-GEP, GEP without residual gradients.

Table 1: Test accuracy (in %) with varying choices of privacy bound ϵ . The numbers under symbol Δ denote the improvement over GP baseline.

Dataset	Algorithm	$\epsilon = 2$	Δ	$\epsilon = 5$	Δ	$\epsilon = 8$	Δ
MNIST	GP	94.7	+0.0	96.8	+0.0	97.2	+0.0
	PATE	98.5	+3.8	98.5	+1.7	98.6	+1.4
	B-GEP	93.1	-1.6	94.5	-2.3	95.9	-1.3
	GEP	96.3	+1.6	97.9	+1.1	98.4	+1.2
SVHN	GP	87.1	+0.0	91.3	+0.0	91.6	+0.0
	PATE	80.7	-6.4	91.6	+0.3	91.6	+0.0
	B-GEP	88.5	+1.4	91.8	+0.5	92.3	+0.7
	GEP	92.3	+5.2	94.7	+3.4	95.1	+3.5
CIFAR-10	GP	43.6	+0.0	52.2	+0.0	56.4	+0.0
	PATE	34.2	-9.4	41.9	-10.3	43.6	-12.8
	B-GEP	50.3	+6.7	59.5	+7.3	63.0	+6.6
	GEP	59.7	+16.1	70.1	+17.9	74.9	+18.5