MiCE: Mixture of Contrastive Experts for Unsupervised Image Clustering

Tsung Wei Tsai, Chongxuan Li, Jun Zhu

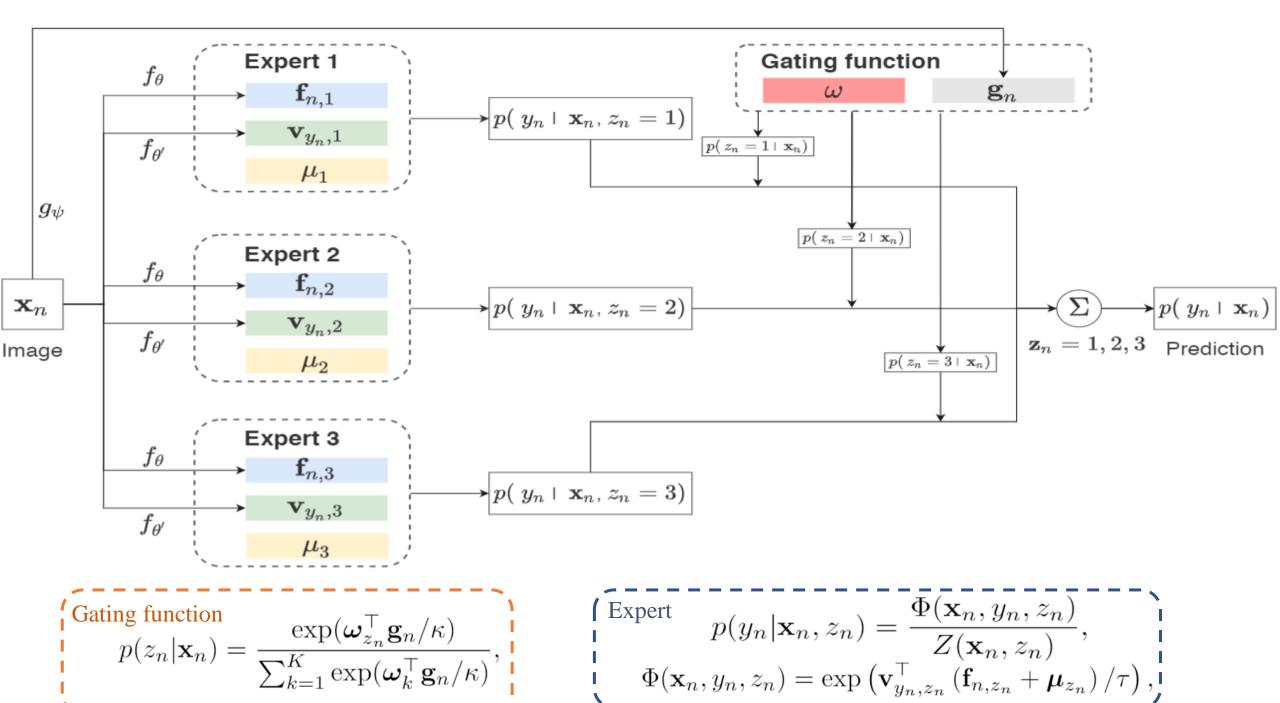
Department of Computer Science and Technology, Tsinghua University, China ICLR 2021

Current difficulties in Deep Clustering

- *Discriminative* representation learning that capture the *semantic* similarity between images
- Cumbersome techniques to avoid cluster degeneracy
 - Pre-training
 - K-mean initialization
 - Extra regularization terms
 - Combining multiple clustering-related loss

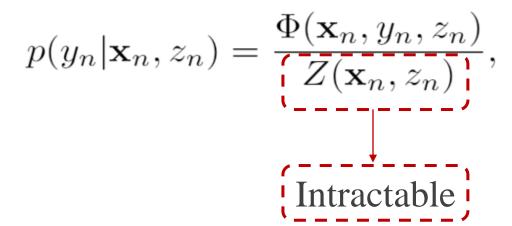
A Unified Probabilistic Clustering Framework

Contrastive Learning


- Instance discrimination task
- Discriminative representations

Latent Mixture Model

- Capture semantic structure
- Divide-and-conquer


$$p(\mathbf{Y}, \mathbf{Z} | \mathbf{X}) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(z_n = k | \mathbf{x}_n)^{\mathbb{1}(z_n = k)} p(y_n | \mathbf{x}_n, z_n = k)^{\mathbb{1}(z_n = k)}$$

Gating function

MiCE – Inference & Learning

- Parameters to update
 - DNNs: θ , ψ
 - Prototypes: *μ*

- A variant of EM algorithm
 - E step: approximate posterior inference, construct ELBO
 - M step: update above parameters to maximize ELBO

Evidence Lower Bound (ELBO)

• MiCE optimize the ELBO of the log conditional likelihood

$$\log p(y_n|\mathbf{x}_n) \ge \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\psi}, \boldsymbol{\mu}; \mathbf{x}_n, y_n)$$

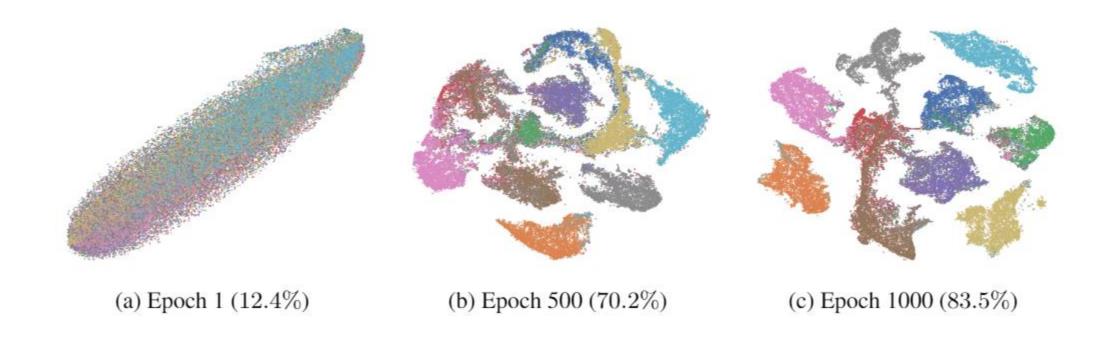
$$:= \mathbb{E}_{q(z_n|\mathbf{x}_n, y_n)} [\log p(y_n|\mathbf{x}_n, z_n; \boldsymbol{\theta}, \boldsymbol{\mu})] - D_{\mathrm{KL}}(q(z_n|\mathbf{x}_n, y_n) || p(z_n|\mathbf{x}_n; \boldsymbol{\psi}))$$

• q(.) is the variational distribution

- 1st term: possibly relief the *degeneracy* issue
- 2nd term: refine gating network to consider info in experts
- Only a single object function

Theoretical Analysis

1. Relationship to a two-stage approach


2. The objective function of MiCE converges under the proposed EM algorithm

Experiments – comparing to SOTA

Datasets	CIFAR-10			CIFAR-100			STL-10			ImageNet-Dog		
Methods/Metrics (%)	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI	NMI	ACC	ARI
k-means (Lloyd, 1982)	8.7	22.9	4.9	8.40	13.0	2.8	12.5	19.2	6.1	5.5	10.5	2.0
SC (Zelnik-Manor & Perona, 2004)	10.3	24.7	8.5	9.0	13.6	2.2	9.8	15.9	4.8	3.8	11.1	1.3
AE† (Bengio et al., 2006)	23.9	31.4	16.9	10.0	16.5	4.8	25.0	30.3	16.1	10.4	18.5	7.3
DAE† (Vincent et al., 2010)	25.1	29.7	16.3	11.1	15.1	4.6	22.4	30.2	15.2	10.4	19.0	7.8
SWWAE† (Zhao et al., 2015)	23.3	28.4	16.4	10.3	14.7	3.9	19.6	27.0	13.6	9.4	15.9	7.6
GAN† (Radford et al., 2015)	26.5	31.5	17.6	12.0	15.3	4.5	21.0	29.8	13.9	12.1	17.4	7.8
VAE† (Kingma & Welling, 2013)	24.5	29.1	16.7	10.8	15.2	4.0	20.0	28.2	14.6	10.7	17.9	7.9
JULE (Yang et al., 2016)	19.2	27.2	13.8	10.3	13.7	3.3	18.2	27.7	16.4	5.4	13.8	2.8
DEC (Xie et al., 2016)	25.7	30.1	16.1	13.6	18.5	5.0	27.6	35.9	18.6	12.2	19.5	7.9
DAC (Chang et al., 2017)	39.6	52.2	30.6	18.5	23.8	8.8	36.6	47.0	25.7	21.9	27.5	11.1
DCCM (Wu et al., 2019)	49.6	62.3	40.8	28.5	32.7	17.3	37.6	48.2	26.2	32.1	38.3	18.2
IIC (Ji et al., 2019)	-	61.7	-	-	25.7	-	-	49.9	-	-	-	-
DHOG (Darlow & Storkey, 2020)	58.5	66.6	49.2	25.8	26.1	11.8	41.3	48.3	27.2	-	-	-
AttentionCluster (Niu et al., 2020)	47.5	61.0	40.2	21.5	28.1	11.6	44.6	58.3	36.3	28.1	32.2	16.3
MMDC (Shiran & Weinshall, 2019)	57.2	70.0	-	25.9	31.2	-	49.8	61.1	-	-	-	-
PICA (Huang et al., 2020)	59.1	69.6	51.2	31.0	33.7	17.1	61.1	71.3	53.1	35.2	35.2	20.1
MoCo (Mean)† (He et al., 2020)	66.0	74.7	59.3	38.8	39.5	24.0	60.5	70.7	53.0	34.2	30.8	18.4
MoCo (Std.)† (He et al., 2020)	0.6	1.7	0.9	0.2	0.1	0.4	0.9	2.0	0.8	0.3	1.7	0.9
MiCE (Mean, Ours)	73.5	83.4	69.5	43.0	42.2	27.7	61.3	72.0	53.2	39.4	39.0	24.7
MiCE (Std., Ours)	0.2	0.2	0.3	0.5	1.4	0.4	1.2	1.8	2.4	1.8	3.0	2.4
MoCo (Best)† (He et al., 2020)	66.9	77.6	60.8	39.0	39.7	24.2	61.5	72.8	52.4	34.7	33.8	19.7
MiCE (Best, Ours)	73.7	83.5	69.8	43.6	44.0	28.0	63.5	75.2	57.5	42.3	43.9	28.6

Visualization

Thank you for listening

• Primary contact: peter83112414@gmail.com

• Github: https://github.com/TsungWeiTsai/MiCE

