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Robust control
Goal: Certifiable robustness within some specified perturbation set

s. t. 𝑤 𝑡 ! ≤ 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 !
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Unknown 
(nonlinear) system

�̇� 𝑡 ∈ 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐺𝑤 𝑡 s. t. 𝑤 𝑡 ! ≤ 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 !

𝑢 𝑡 = 𝐾𝑥(𝑡) 𝑉
continuous, non-negative

�̇� 𝑥(𝑡) ≤ −𝛼𝑉 𝑥(𝑡) ∀𝑡s.t.

Model of system uncertainty (e.g., NLDI)

Simple policy Lyapunov function “Sufficient decrease” condition



Our approach

Step 1: Obtain Lyapunov function 𝑉 via robust control

Step 2: Construct policy 𝜋"
• Construct deep network :𝜋"
• Project output onto stabilizing action set 𝒞(𝑥 𝑡 ) satisfying sufficient decrease of 𝑉

𝜋" 𝑥 𝑡 = Proj𝒞(% & ) :𝜋" 𝑥 𝑡

Step 3: Train end-to-end using standard deep RL techniques
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Finding a stabilizing set

Given: Lyapunov function 𝑉 (obtained via robust control)

Find: For given 𝑥, the set of actions decreasing 𝑉 even in the worst case

𝒞 𝑥 ≡ { 𝑢: sup
( ∶ ( !* +%,-. !

�̇� 𝑥 ≤ −𝛼𝑉 𝑥 }

⇒ {𝑢: 𝑘/ 𝑥 + 𝐷𝑢 ! ≤ 𝑘! 𝑥 + 𝑘0 𝑥 1𝑢}
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Convex set in 𝑢 𝑡
Non-empty: 𝐾𝑥 ∈ 𝒞(𝑥)

Note: 𝑡-dependence has been dropped for brevity



Embedding robust control constraints in deep RL

Project output of deep network onto stabilizing action set

𝜋" 𝑥 𝑡 = Proj𝒞(% & ) :𝜋" 𝑥 𝑡

Differentiate through projection using recent      
techniques in differentiable optimization                                                
(e.g., Amos and Kolter, 2018)

• Implicit function theorem applied to KKT conditions or               
fixed-point equations of convex optimization problem

Note: We build a custom differentiable solver
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{u : S(u) < 0}

Kx(t)
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𝒞 𝑥 𝑡

𝜋! 𝑥 𝑡
𝐾𝑥(𝑡)

*𝜋! 𝑥 𝑡



Experiments

(Simulated) experiments on four different domains
1. Random norm-bounded linear differential inclusions (NLDIs)
2. Cartpole stabilization
3. Quadrotor control
4. Microgrid simulator
5. PLDI and 𝐻3 settings

In all cases, compare performance under
• “Ordinary” operation
• “Adversarial” disturbances
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Illustrative results: NLDI
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Summary

Method for learning provably robust nonlinear policies using deep RL

Key insight: Project output of neural network onto stabilizing set of actions
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Deep network
!𝝅𝜽 :𝜋"(𝑥 𝑡 )

Projection onto
𝓒(𝒙 𝒕 )

𝜋"(𝑥 𝑡 )

Update using gradients 
(backpropagation)

[𝑢 𝑡 ]


