Enforcing robust control guarantees within neural network policies

Priya L. Donti

Carnegie Mellon University

Joint work with Melrose Roderick, Mahyar Fazlyab, Zico Kolter

Robust control

Goal: Certifiable robustness within some specified perturbation set

Unknown (nonlinear) system

Model of system uncertainty (e.g., NLDI)

 $\dot{x}(t) \in Ax(t) + Bu(t) + Gw(t)$ s.t. $||w(t)||_2 \le ||Cx(t) + Du(t)||_2$

Simple policy

V continuous, non-negative **Lyapunov function**

s.t.
$$\dot{V}(x(t)) \leq -\alpha V(x(t)) \forall t$$

"Sufficient decrease" condition

Our approach

Step 1: Obtain Lyapunov function *V* via robust control

Step 2: Construct policy π_{θ}

- Construct deep network $\hat{\pi}_{\theta}$
- Project output onto stabilizing action set C(x(t)) satisfying sufficient decrease of V

$$\pi_{\theta}(x(t)) = \operatorname{Proj}_{\mathcal{C}(x(t))} \left(\hat{\pi}_{\theta}(x(t)) \right)$$

Step 3: Train end-to-end using standard deep RL techniques

Finding a stabilizing set

Given: Lyapunov function V (obtained via robust control)

Find: For given *x*, the set of actions decreasing *V* even in the worst case

$$C(x) \equiv \{ u: (\sup_{w: \|w\|_{2} \le \|Cx + Du\|_{2}} \dot{V}(x)) \le -\alpha V(x) \}$$

$$\Rightarrow \{ u: \|k_{1}(x) + Du\|_{2} \le k_{2}(x) + k_{3}(x)^{T}u \}$$

Convex set in $u(t)$
Non-empty: $Kx \in C(x)$

Note: *t*-dependence has been dropped for brevity

Embedding robust control constraints in deep RL

Project output of deep network onto stabilizing action set

$$\pi_{\theta}(x(t)) = \operatorname{Proj}_{\mathcal{C}(x(t))} \left(\widehat{\pi}_{\theta}(x(t)) \right)$$

Differentiate through projection using recent techniques in differentiable optimization (e.g., Amos and Kolter, 2018)

• Implicit function theorem applied to KKT conditions or fixed-point equations of convex optimization problem

Note: We build a custom differentiable solver

Experiments

(Simulated) experiments on four different domains

- 1. Random norm-bounded linear differential inclusions (NLDIs)
- 2. Cartpole stabilization
- 3. Quadrotor control
- 4. Microgrid simulator
- 5. PLDI and H_{∞} settings

In all cases, compare performance under

- "Ordinary" operation
- "Adversarial" disturbances

Illustrative results: NLDI

7

Summary

Method for learning provably robust nonlinear policies using deep RL

Key insight: *Project* output of neural network onto stabilizing set of actions

