Lossless Compression of Structured Convolutional Models (GNNs) via Lifting

Gustav Sourek* & Filip Zelezny & Ondrej Kuzelka

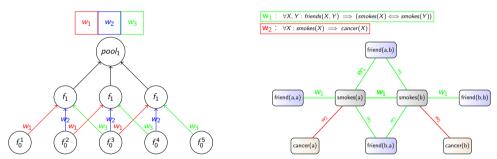
* souregus@fel.cvut.cz

Czech Technical University in Prague

@ International Conference on Learning Representations (ICLR) '21

Lifted (Templated) Models

Lifted (templated) models exploit input sample **symmetries** using parameterized computation **templates**, while inducing **weight-sharing** in their respective computation graphs:



Templating in a CNN (left) and a lifted graphical model (MLN - right).

Templating improves **generalization** w.r.t. different sample transformations in pixel grids (CNNs), trees (RNNs), graphs (GNNs), and beyond (Lifted Relational Neural Networks).

Lifted Inference

Lifted Inference

is a technique to exploit computation graph symmetries for speedup.

- known in Statistical Relational Learning and database query engines
- but so far unexploited in deep learning!

Q: But do such computation graph symmetries occur in deep learning practice?

 A: Yes, particularly in the recently explored structured data domains with discrete-valued elements such as social, biological, chemical graphs and networks.

"Structured Convolutional Models?"

are simply the templated (convolutional) models applied to such structured data domains.

• e.g. the common Graph Neural Networks (GNNs)

Lossless Compression via Lifting

To detect the symmetries in computation graphs, we partition its nodes into **equivalence** classes:

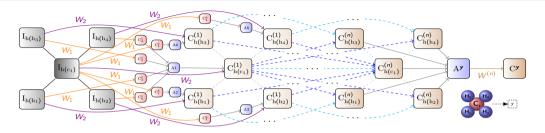
Definition (functional equivalence)

We say that two nodes $N_1, N_2 \in \mathcal{N}$ are **functionally equivalent** if, for any initialization of (shared) weights \mathcal{W} , it holds that $value(N_1; \mathcal{W}) = value(N_2; \mathcal{W})$.

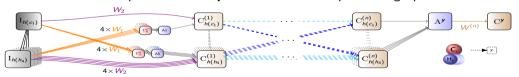
The compression algorithm then works very simply in 2 steps

- precalculate the equivalence classes of neurons
- 2 iterate the computation graph and replace all nodes with a single equivalent

GNN compression example



is compressed into equivalent GNN computation graph:



Experimental settings

Models:

- classic GCNs, graph-SAGE, GIN, and some extensions (graphlet networks)
- also GNNs modified into knowledge-base embedding (KBE) mode

Learning tasks:

- Molecule classification
 - various (large) molecular datasets
- Knowledge base completion (KBC)
 - various mid-sized KBs such as Kinships, Nations, and UMLS

Lossless Compression Results

The models were implemented within the framework of *Lifted Relational Neural Networks*¹ (LRNNs), but we also compared with specialized GNN frameworks of PyG² and DGL 3 :

Model	Lifting (s)	LRNNs (s)	PyG (s)	DGL (s)
GCN	$\textbf{0.25}\pm\textbf{0.01}$	0.75 ± 0.01	3.24 ± 0.02	23.25 ± 1.94
g-SAGE	$\textbf{0.34}\pm\textbf{0.01}$	0.89 ± 0.01	3.83 ± 0.04	24.23 ± 3.80
GIN	$\textbf{1.41}\pm\textbf{0.10}$	2.84 ± 0.09	11.19 ± 0.06	52.04 ± 0.41

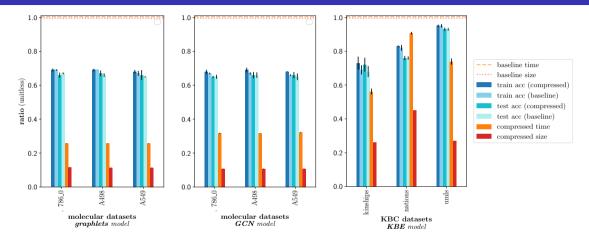
Training times per epocha across different models and frameworks over 3000 molecules.

¹https://github.com/GustikS/NeuraLogic

²https://github.com/rusty1s/pytorch_geometric

³https://www.dgl.ai/

Lossless Compression Results



Comparison of 3 different baseline models of graphlets (left), GCNs (middle), and KBEs (right) with their compressed versions over molecule classification (left, middle) and knowledge-base completion (right).

Conclusions

- The symmetries are indeed common in structured (discrete) data domains
 - especially in the molecular graphs, but also elsewhere
- The resulting compression rates and speedups are quite significant
 - easily 2-5x improvement in classic GNN classification settings
- The technique is very simple and can be adopted by any templated model
 - and can be easily extended into a lossy compression setting for further speedup
- The experiments and the LRNN framework itself are available at Github
 - Experiments: https://github.com/GustikS/NeuraLifting
 - LRNN: https://github.com/GustikS/NeuraLogic
 - email: souregus@fel.cvut.cz