Adaptive Universal Generalized PageRank Graph Neural Network

Eli Chien¹ Jianhao Peng¹ Pan Li² Olgica Milenkovic¹

ECE, University of Illinois Urbana-Champaign, USA¹ CS, Purdue University, USA²

March 21, 2021

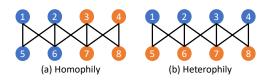
Chien et al. (UIUC) GPR-GNN March 21, 2021 1/10

Fundamental weaknesses of existing GNNs

- Most of the existing GNN architectures have two fundamental weaknesses, as they repetitively stacking GNN layers and only use final layers as output.
 - ► Universality issue restricts their learning ability on general graph-structured data.
 - ▶ Over-smoothing problem prevents them from being "deep models".

Universality issue

- Most GNNs only work on homophilic (associative) graphs.
- Homophily principle: nodes from the same class tend to form edges.
- Counterexamples (heterophily/weak homophily):
 - ▶ Dating graphs: preferential connection with people of the opposite sex.
 - Protein structure: different classes of amino acids are more likely to connect.
- Design GNN that works in both cases: Universality.



Over-smoothing problem:

- Practical GNNs are mostly shallow (2-4 layers): better empirical performance.
- If one drop all non-linearity and stack infinitely many layers in GCN:

$$H_{\mathsf{GCN}}^{(\infty)} = \tilde{A}_{\mathsf{sym}}^{\infty} XW = v_1 v_1^T XW,$$

where v_1 is the first eigenvector of \tilde{A}_{sym} .

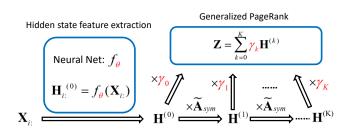
- Each row of $H_{GCN}^{(\infty)}$ becomes identical (up to a scalar independent of X).
- ⇒ Lose feature information.



Chien et al. (UIUC) GPR-GNN March 21, 2021 4/10

Our solution: Generalized PageRank GNN (GPR-GNN)

- GPR-GNN further prevents the over-fitting problem and has interpretability on its learned weights.
- Theory of GPR: we analyzed the statistical properties of GPR in (Li et al. 2019¹).
- Special cases of GPR: Personalized PageRank (PPR), Heat-kernel PageRank (HPR) ... etc.



¹Pan Li*, Eli Chien*, and Olgica Milenkovic. Optimizing generalized pagerank methods for seed-expansion community detection. In NeurIPS, 2019.

Chien et al. (UIUC) GPR-GNN March 21, 2021 5 / 10

Why GPR-GNN is universal?

- Equivalence of GPR and polynomial graph filtering $\left(\sum_{k=0}^K \gamma_k \tilde{A}_{\text{sym}}^k\right)$
- Learning optimal GPR weights
 ⇔ optimal polynomial graph filter coefficients.
- Polynomial filter can approximate arbitrary filter (not restricting to high-pass!).
- Our theorem shows that
 - ▶ If all GPR weights are positive: Low-pass filter
 - $\gamma_k = (-\alpha)^k, \alpha \in (0,1)$: High-pass filter
 - ▶ PPR(APPNP/SGC), and HPR are low-pass filter.

6 / 10

Why GPR-GNN resolves over-smoothing?

Key idea: If the k^{th} step $H^{(k)}$ is not helpful (increase training loss) \Rightarrow the magnitude of γ_k should decay (done by the optimizer).

Theorem (Informal)

Assume the graph G is connected and the training set contains nodes from each of the classes. Also assume that k' is large enough so that the over-smoothing effect occurs for $H^{(k)}, \forall k \geq k'$ which dominate the contribution to the final output Z. Then, the gradients of γ_k and γ_k are identical in sign for all $k \geq k'$.

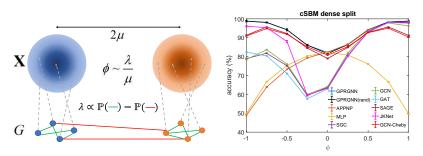
7 / 10

Experiments: Synthetic data

Test GNNs on graphs with arbitrary levels of homophily and heterophily: contextual Stochastic Block Model (cSBM).

Node features X: Gaussian vectors; Graph G: from SBM. $\phi \in [-1, 1]$

- $|\phi| \to 1$: Graph topology gets more informative and node features become less informative.
- Sign of ϕ : + for homophily and for heterophily.



More experiments

- Real-world datasets: in general GPR-GNN has the best performance (especially in heterophily data sets).
- Interpretability: Learned GPR weights match homophily/heterophily of graph data sets.
- Escaping over-smoothing: Even start with over-smoothing scenario, GPR-GNN can escape from it and learn meaningful results.
- These can be found in our poster and paper.

9/10

Thanks for your attention!

Feel free to ask questions at our poster!

Visit our poster at Poster Session 9

May 5, 2021, 5 p.m.-7 p.m. (PDT)