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Robustness Issues of Deep Neural Networks

* FGSM (Goodfellow 2014) .
 PGD (Madry 2017) .
 CW (Carlini & Wargner, 2017) .
* Manifold attack (Jalal 2017) .

 And many .
\/

\/
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% Numerical solver to obtain the solution

Adversarial training (so many)

Grading masking (Liu 2018)

Data augmentation (Shorten 2019)
Reactive defense (Metzen 2017, Song 2017)
And many

** We propose a close-loop control method to improve robustness of neural networks
** Define an objective function to connect close-loop method and neural network robustness
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% Discretization
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Xt_|_1 = Xt —|— f(Xt, t, 075)
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Dynamic System Perspective of DNN

DNN as discdretization of ODE (E 2017, Haber 2017, Chen 2018)
dx _ g
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DNN training as open-loop control (Li et al. 2017)

» Adversarial training formulated as robust open-loop control (Zhang et al. 2019)
¢ DNN training as trajectory optimization (Liu et al. 2020)




Close-loop Control for Robust Neural Networks

\/

** Consider a feedforward network as discrete dynamic system
x;11 = f(x¢,0¢),x0 = input data, Label y = ®(x7)
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** DNN with close-loop controllers
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s+ Difference between open and close-loop control methods
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s Controls are adaptive for each input
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** The network parameters are not modified



Controller Design Based on Embedding

\/

** |deain classical trajectory optimization
“correct” trajectry x;
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desired controlled x;
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* We do NOT know the true trajectory (require true label)
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* We control the manifold of clean trajectories of training dataset

Embedding of training trajectory
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Controller Design Based on Embedding
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s+ Distance with the ‘desired’ manifold measured by

Reconstruction error e; = ||5t(Xt) — Xt||2

/

** Running loss of every layer with regularization

L(xs, m(x1), E(+)) = [1€0(x4) — % ||* 4 7 (3¢0) T Rowy ()
** Overall close-loop control loss:
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% Expected total loss of all layers except the last layer
T—1

miI%F 1E(X0,y)ND Z E(Xtaﬂt(xt>agt(xt))
{me(-) =0 t=0



Numerical Solver

» Solve the close-loop control objective function is hard
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** Requires solving a super high-dim PDE

*» Instead, compute a specific control signal for a given possible perturbed data sample
** Pontryagin’s Maximum Principle

» Iterate the following steps:
s Forward propagation of x,

* Backward propagation of p;
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** Optimize over u; to maximize the Hamiltonian



Numerical Results

** Control result of a standard trained ResNet-20
% CLC-NN + Linear: Proposed method with linear embedding
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%* CLC-NN + nonlinear: Proposed method with auto-encoder embedding

Accuracy: original model without CLC / CLC-NN + Linear / CLC-NN + Nonlinear

Dataset 3 Type of input perturbations

None Manifold FGSM PGD CW

CIFAR.- 2 24/79 /82 21756756 0/50/50 8/75/79
10 4 02/88/89 5/78/781 11740730 0/31/19 0775779
8 1/78/81 8/20/12 0/711/2 0/76/79
CIFAR. 2 0/51/52 9725723 0/171/722 4747749
100 4 69/ 60/ 58 3/50/52 5/15/9 D/6/4 1747749
8 2/50/52 4/975 07170 0747749

** Comparison with Reactive Defense (linear embedding)
** + means outperform, - means underperform

Type of input perturbations

Method None Manifold FGSM PGD CW
CIFAR-10 -3 +477+63 /466 427/ +20/+13 +43 /4357425 +66/+76/+717
CIFAR-100 +1 +34 7 +37 /438 +22/0/+49 +44 /4307 +11  +37/+430/7 +16




