Towards Robust Neural Networks via Closeloop Control

Zhuotong Chen^{1,E}, Qianxiao Li^{2, 3, E}, Zheng Zhang¹

¹ University of California, Santa Barbara,
²National University of Singapore
³Insitute of High Performance Computing, SG
(^ε Equal contribution)

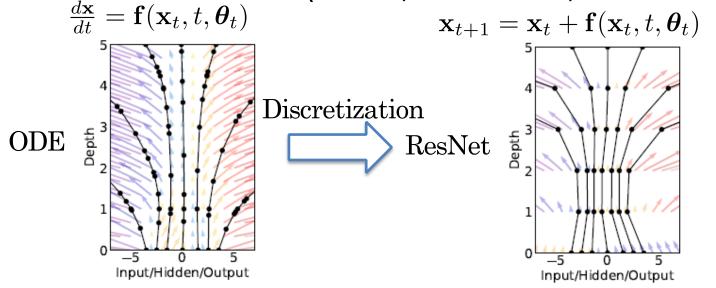
Robustness Issues of Deep Neural Networks

- FGSM (Goodfellow 2014)
- PGD (Madry 2017)
- CW (Carlini & Wargner, 2017)
- Manifold attack (Jalal 2017)
- And many

- Adversarial training (so many)
- Grading masking (Liu 2018)
- Data augmentation (Shorten 2019)
- Reactive defense (Metzen 2017, Song 2017)
- And many
- We propose a close-loop control method to improve robustness of neural networks
 - Define an objective function to connect close-loop method and neural network robustness
 - Numerical solver to obtain the solution

Dynamic System Perspective of DNN

DNN as discretization of ODE (E 2017, Haber 2017, Chen 2018)



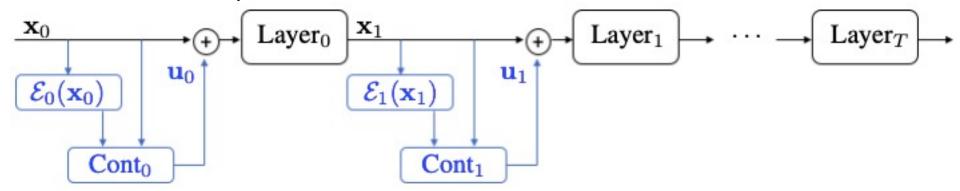
- DNN training as open-loop control (Li et al. 2017)
- Adversarial training formulated as robust open-loop control (Zhang et al. 2019)
- DNN training as trajectory optimization (Liu et al. 2020)

Close-loop Control for Robust Neural Networks

Consider a feedforward network as discrete dynamic system

$$\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t, \boldsymbol{\theta}_t), \mathbf{x}_0 = \text{input data, Label } \mathbf{y} = \Phi(\mathbf{x}_T)$$

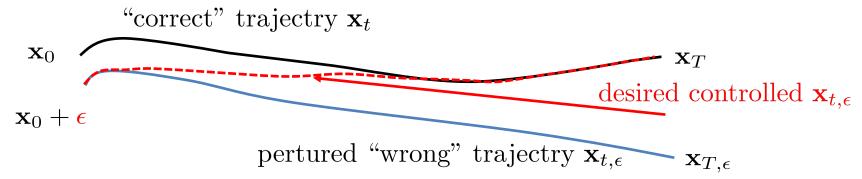
DNN with close-loop controllers



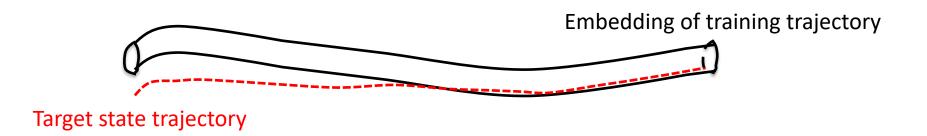
- Difference between open and close-loop control methods
 - Controls are adaptive for each input
 - The network parameters are not modified

Controller Design Based on Embedding

Idea in classical trajectory optimization

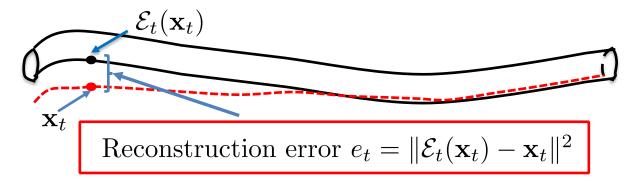


- ❖ We do NOT know the true trajectory (require true label)
- We control the manifold of clean trajectories of training dataset



Controller Design Based on Embedding

Distance with the 'desired' manifold measured by



Running loss of every layer with regularization

$$\mathcal{L}(\mathbf{x}_t, \pi_t(\mathbf{x}_t), \mathcal{E}_t(\cdot)) = \|\mathcal{E}_t(\mathbf{x}_t) - \mathbf{x}_t\|^2 + \pi_t(\mathbf{x}_t)^T \mathbf{R} \pi_t(\mathbf{x}_t)$$

- Overall close-loop control loss:
 - Expected total loss of all layers except the last layer

$$\min_{\{\pi_t(\cdot)\}_{t=0}^{T-1}} \mathbb{E}_{(\mathbf{x}_0,\mathbf{y})\sim\mathcal{D}} \sum_{t=0}^{T-1} \mathcal{L}(\mathbf{x}_t, \pi_t(\mathbf{x}_t), \mathcal{E}_t(\mathbf{x}_t))$$

Numerical Solver

- Solve the close-loop control objective function is hard
 - Requires solving a super high-dim PDE
- Instead, compute a specific control signal for a given possible perturbed data sample
- Pontryagin's Maximum Principle
- Iterate the following steps:
 - Forward propagation of x_t
 - Backward propagation of pt
 - Optimize over u_t to maximize the Hamiltonian

Numerical Results

- Control result of a standard trained ResNet-20
 - CLC-NN + Linear: Proposed method with linear embedding
 - CLC-NN + nonlinear: Proposed method with auto-encoder embedding

	ϵ	Accuracy: original model without CLC / CLC-NN + Linear / CLC-NN + Nonlinear						
Dataset		Type of input perturbations						
		None	Manifold	FGSM	PGD	CW		
CIFAR- 10	2	92 / 88 / 89	24 / 79 / 82	21 / 56 / 56	0 / 50 / 50	8/75/79		
	4		5/78/81	11 / 40 / 30	0/31/19	0/75/79		
	8		1/78/81	8/20/12	0/11/2	0/76/79		
CIFAR- 100	2	69 / 60 / 58	9/51/52	9/25/23	0 / 17 / 22	4 / 47 / 49		
	4		3/50/52	5/15/9	0/6/4	1 / 47 / 49		
	8		2/50/52	4/9/5	0/1/0	0 / 47 / 49		

- Comparison with Reactive Defense (linear embedding)
 - + means outperform, means underperform

Method	Type of input perturbations						
Method	None	Manifold	FGSM	PGD	CW		
CIFAR-10	-3	+47 / +63 / +66	+27 / +20 / +13	+43 / +35 / +25	+66 / +76 / +77		
CIFAR-100	+1	+34/+37/+38	+22/0/+9	+44 / +30 / +11	+37 / +30 / +16		