

Influence Estimation for Generative Adversarial Networks

Naoyuki Terashita, Hiroki Ohashi, Yuichi Nonaka, and Takashi Kanemaru Hitachi, Ltd.

Motivation and Contribution

Motivation

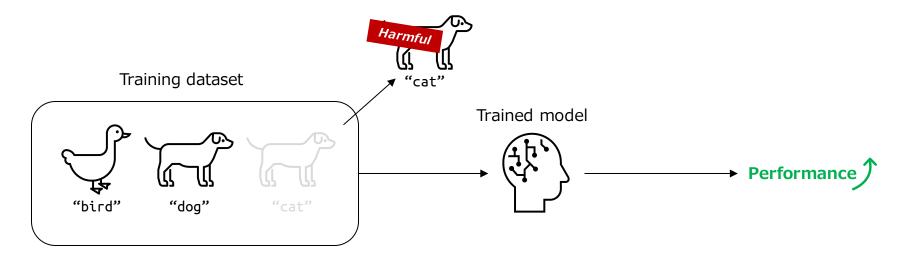
- Identifying harmful training instances of GANs by influence estimation
- Solving 2 issues to bring approaches for supervised learning to influence estimation for GANs
 - i. A training instance only takes an indirect role in the generator's training
 - ii. Losses do not always represent the model performance

Contribution

- We proposed an estimator of influence on the GAN parameters using Jacobian of mini-batches to consider the indirect role of a training instance.
- We proposed to evaluate the instance based on influence on GAN evaluation metric and proposed its estimator.
- We evaluated estimated influence on GAN evaluation metric by two experiments (1. Estimation accuracy,
 2. Data cleansing)

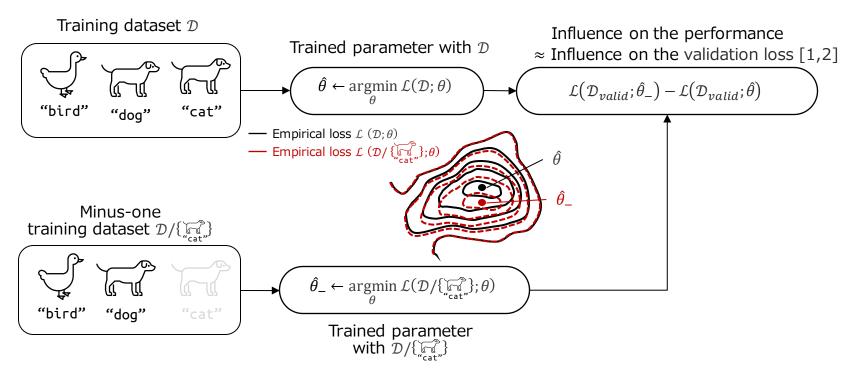
Influence estimation and harmful instance

- *Influence* of a training instance: scalar or vector of how absence of the instance changes the performance (parameters, or predictions) of the trained model.
- Influence Estimation: Approximating influence without performing actual removal of instance and retraining
- Harmful instance: A training instance whose absence has positive influence on the performance



Influence on the performance in supervised learning

In supervised learning settings,

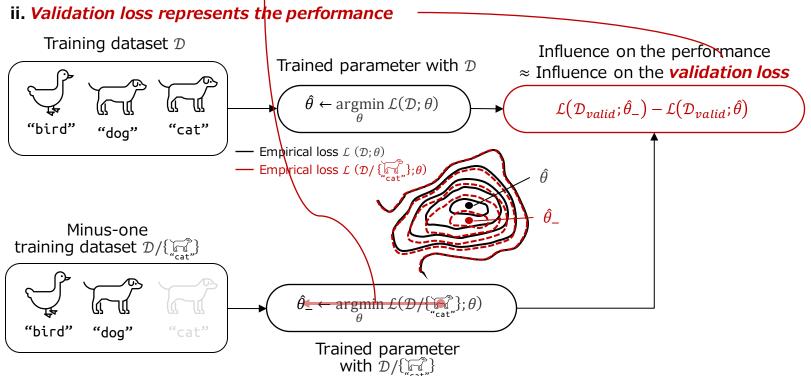


^[1] Khanna, Rajiv, et al. "Interpreting black box predictions using fisher kernels." The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019.

Assumptions in influence estimation for supervised learning

Existing approaches for supervised learning [1,2] put 2 assumptions:

i. Absence of an instance *directly* changes the training

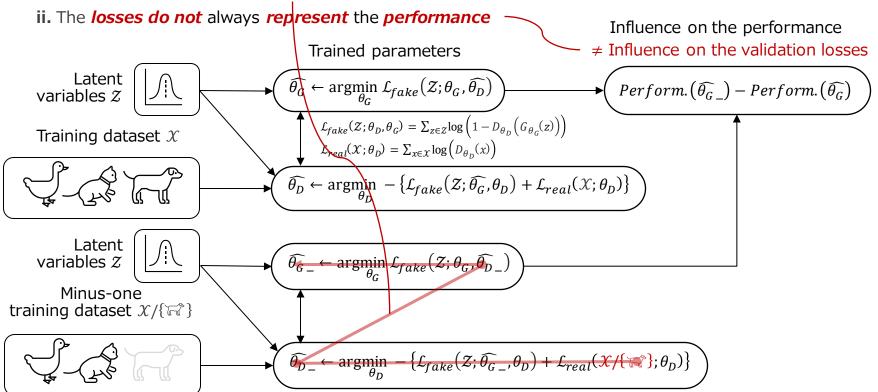


^[1] Khanna, Rajiv, et al. "Interpreting black box predictions using fisher kernels." The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019.

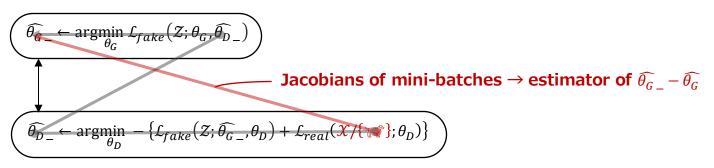
Influence on the performance in GANs

In GAN's two models (Generator G_{θ_G} , Discriminator D_{θ_D}) setting,

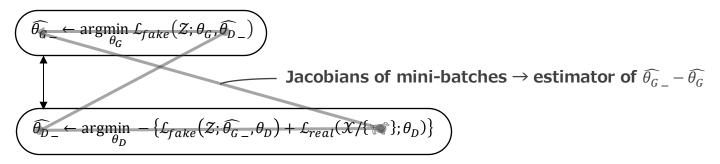
i. Absence of an instance *only indirectly* changes the generator's training



- i. Absence of an instance only indirectly changes the generator's training
 - → *Jacobians of mini-batches* can be used to obtain the **estimator of influence on the parameters**

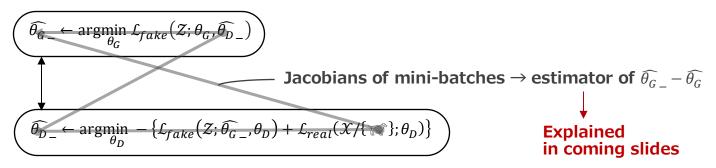


- i. Absence of an instance *only indirectly* changes the generator's training
 - → *Jacobians of mini-batches* can be used to obtain the **estimator of influence on the parameters**



- ii. The *losses do not* always *represent* the *performance*
 - → Influence on GAN evaluation metrics (e.g., Inception Score, FID) and its estimator.

- i. Absence of an instance *only indirectly* changes the generator's training
 - → *Jacobians of mini-batches* can be used to obtain the **estimator of influence on the parameters**



- ii. The *losses do not* always *represent* the *performance*
 - → *Influence on GAN evaluation metrics* (e.g., Inception Score, FID) and its **estimator**.

Proposed estimator of influence on $[\theta_G, \theta_D]^T$ with Jacobian

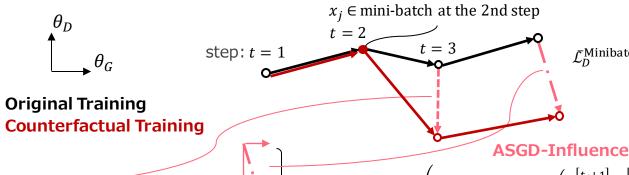
We suppose SGD training, where ···

- Parameter space $[\theta_G, \theta_D]^T$ is only 2-dimensional
- θ_G and θ_D are updated simultaneously
- Both learning rates are 1
- 3 update steps

0

• We want to know influence of j-th instance $x_j \in \mathcal{X}$

Only for simplicity



$$\mathcal{L}_{G}^{\text{Minibatch}} \coloneqq \sum_{z \in Z_{minibatch}} \mathcal{L}_{fake}(z; \theta_{G}, \theta_{D})$$

$$\begin{split} \mathcal{L}_{D}^{\text{Minibatch}} &\coloneqq -\sum_{z \in Z_{minibatch}} \mathcal{L}_{fake}(z; \theta_{G}, \theta_{D}) \\ &- \sum_{x \in X_{minibatch}} \mathcal{L}_{real}(x; \theta_{D}) \end{split}$$

Direct effect $\approx \left(1 - \nabla_{\theta_D}^2 \mathcal{L}_D^{\text{Minibatch}} \left(\theta_G^{[t_j+1]}, \theta_D^{[t_j+1]}\right)\right) \cdot \nabla_{\theta_D} \mathcal{L}_{real} \left(x_j; \theta_G^{[t_j]}, \theta_D^{[t_j]}\right)$

Indirect effect from θ_D to θ_G $\approx \left(1 - \nabla_{\theta_D} \nabla_{\theta_G} \mathcal{L}_G^{\text{Minibatch}} \left(\theta_G^{[t_j+1]}, \theta_D^{[t_j+1]}\right)\right) \cdot \nabla_{\theta_D} \mathcal{L}_{real}\left(x_j; \theta_G^{[t_j]}, \theta_D^{[t_j]}\right)$

Jacobian block of a mini-batch

Proposed estimator of influence on $[\theta_G, \theta_D]^T$ with Jacobian

We suppose SGD training, where ···

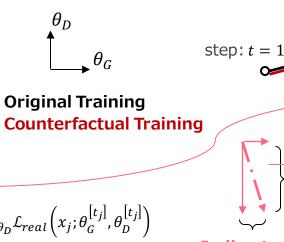
- Parameter space $[\theta_G, \theta_D]^T$ is only 2-dimensional
- θ_G and θ_D are updated simultaneously
- Both learning rates are 1
- 3 update steps

0

• We want to know influence of *j*-th instance $x_i \in \mathcal{X}$

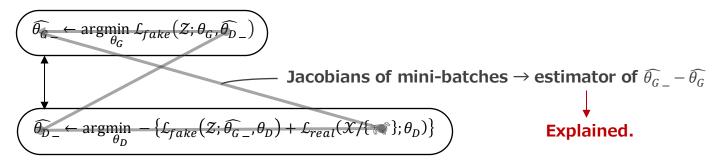
ASGD-Influence

Direct effect $\approx \left(1 - \nabla^2_{\theta_D} \mathcal{L}_D^{\text{Minibatch}} \left(\theta_G^{[t_j+1]}, \theta_D^{[t_j+1]}\right)\right) \cdot \nabla_{\theta_D} \mathcal{L}_{real}\left(x_j; \theta_G^{[t_j]}, \theta_D^{[t_j]}\right)$

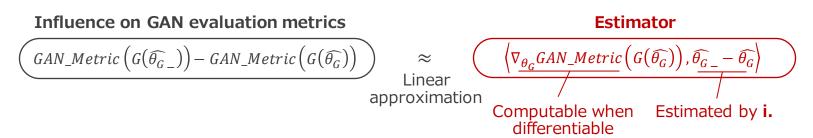


Only for simplicity

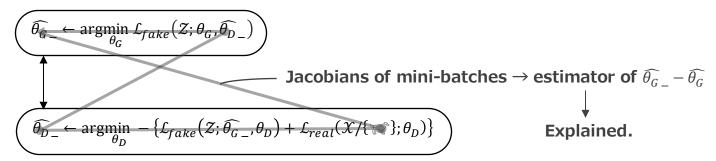
- i. Absence of an instance *only indirectly* changes the generator's training
 - → *Jacobians of mini-batches* can be used to obtain the **estimator of influence on the parameters**



- ii. The *losses do not* always *represent* the *performance*
 - → *Influence on GAN evaluation metrics* (e.g., Inception Score, FID) and its **estimator**.



- i. Absence of an instance *only indirectly* changes the generator's training
 - → *Jacobians of mini-batches* can be used to obtain the **estimator of influence on the parameters**



- ii. The *losses do not* always *represent* the *performance*
 - → *Influence on GAN evaluation metrics* (e.g., Inception Score, FID) and its **estimator**.

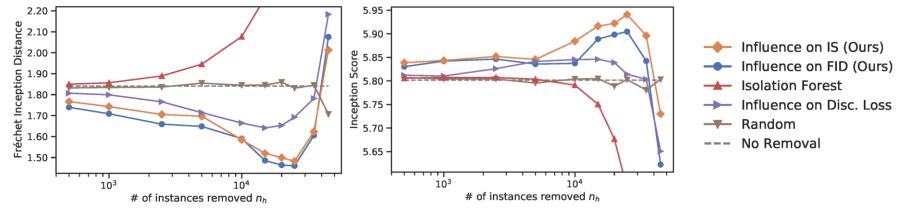
Evaluated in

Experiments

- Exp. 1: Estimation Accuracy
- Exp. 2: Data Cleansing
 - How does the generative performance improve when we remove suggested harmful instances?

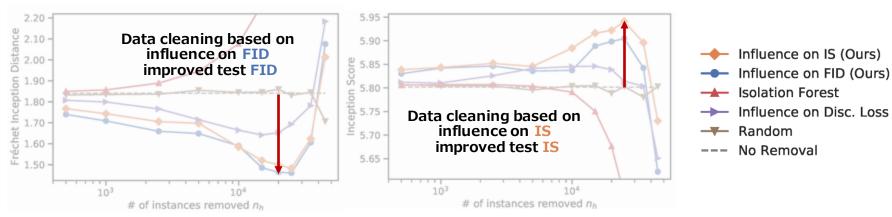
Experiments (Data Cleansing)

- Setup
 - Dataset: MNIST, Architecture: Deep Convolutional GAN
 - Select top n_h highly-harmful instances based on,
 - influence on GAN evaluation metrics (Inception Score (IS) and Fréchet Inception Score (FID))
 - baselines (Isolation Forest, Random, Discriminator Loss)
 - Retrain the model from the last epoch without the highly-harmful instances (Data cleansing)
 - Evaluate improvements in test IS/FID on retrained models from the original model (No Removal).



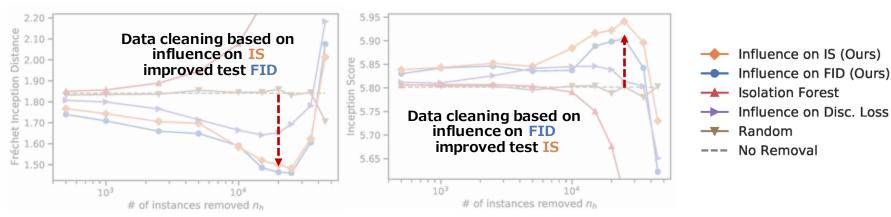
Experiments (Data Cleansing)

- Setup
 - Dataset: MNIST, Architecture: Deep Convolutional GAN
 - Select top n_h highly-harmful instances based on,
 - influence on GAN evaluation metrics (Inception Score (IS) and Fréchet Inception Score (FID))
 - baselines (Isolation Forest, Random, Discriminator Loss)
 - Retrain the model from the last epoch without the highly-harmful instances (Data cleansing)
 - Evaluate improvements in test IS/FID on retrained models from the original model (No Removal).
- Quantitative Results
 - GAN evaluation metrics were statistically significantly improved.



Experiments (Data Cleansing)

- Setup
 - Dataset: MNIST, Architecture: Deep Convolutional GAN
 - Select top n_h highly-harmful instances based on,
 - influence on GAN evaluation metrics (Inception Score (IS) and Fréchet Inception Score (FID))
 - baselines (Isolation Forest, Random, Discriminator Loss)
 - Retrain the model from the last epoch without the highly-harmful instances (Data cleansing)
 - Evaluate improvements in test IS/FID on retrained models from the original model (No Removal).
- Quantitative Results
 - GAN evaluation metrics were **statistically significantly improved**.
 - Data cleansing based on the influence on FID also improved IS, and vice versa.



Conclusion

- Existing influence estimation for supervised learning implicitly requires ···
 - i. Absence of a training instance to directly change the training
 - ii. Validation loss to represent the performance
- However, in GAN's training,
 - i. Absence of a training instance only indirectly changes the generator's training
 - ii. The losses do not always represent the performance
- Our contribution:
 - i. We proposed estimator of influence on the parameters using Jacobians of mini-batches.
 - ii. We proposed to evaluate by influence on GAN evaluation metric and proposed its estimator.
 - iii. We conducted experiments (1. Estimation accuracy, 2. Data cleansing) to evaluate our estimator.
- Experiment (Data Cleansing)
 - Removing a set of the highly-harmful instances improved GAN evaluation metrics,
 - including a GAN evaluation metric not used for the influence estimation
 - Data cleansing improved the visual diversity in the generated samples.