SEDONA: Search for Decoupled Neural Networks toward Greedy Block-wise Learning

Myeongjang Pyeon, Jihwan Moon, Taeyoung Hahn, and Gunhee Kim

I. Greedy Block-wise Learning

Inefficiency in Backpropagation

Limited concurrency due to the sequential nature

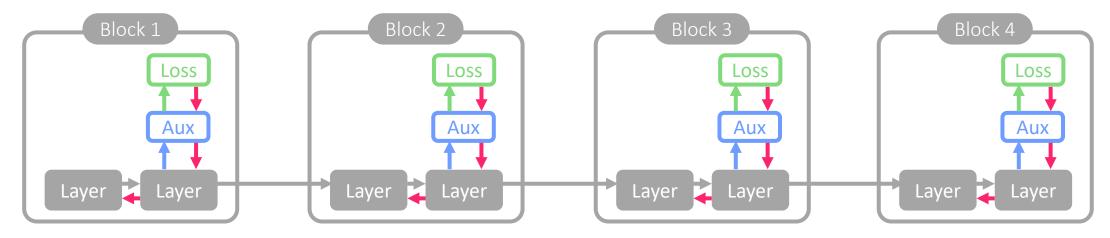
Each layer must wait for upper layers \rightarrow Backward locking & update locking^[1]

Greedy Block-wise Learning A Competitive Alternative

Layers are grouped into blocks

Each block has its lightweight auxiliary network to compute its own local loss

- → Enable asynchronous training by isolating gradients
- → Partially solve backward locking & update locking



Greedy Block-wise Learning A Competitive Alternative

Known to be better than other backprop alternatives [1] but...

It still yields a worse performance than end-to-end backprop (ImageNet error rates of ResNet-152 : SOTA greedy - 25.5%^[2], Backprop - 21.7%^[3])

Can we do better?

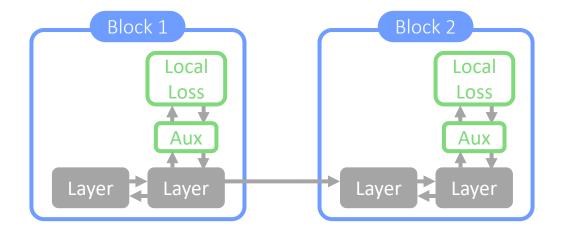
^[2] Belilovsky et al. 2020. Decoupled greedy learning of CNNs. ICML

^[3] ImageNet classification results with pretrained ResNets (1-crop). https://pytorch.org/hub/pytorch_vision_resnet

Problem Statement

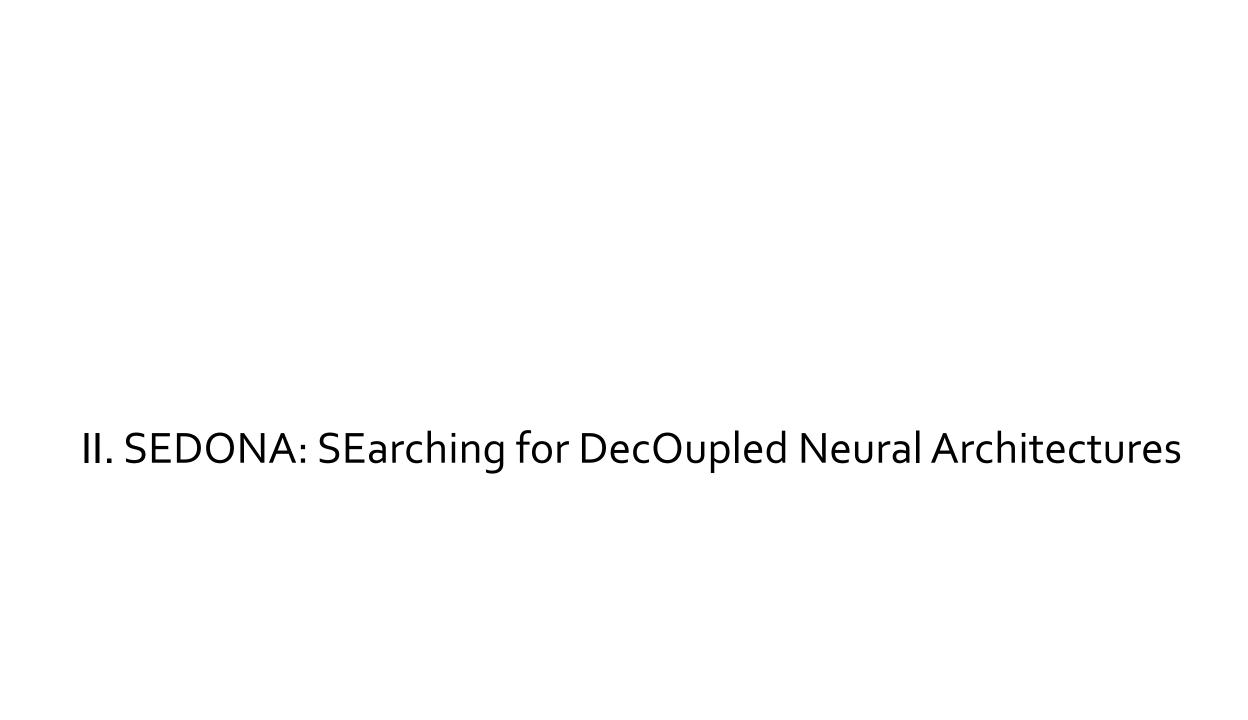
For greedy-block-wise learning, one must make two design decisions:

1) How to group layers into blocks and 2) How to design auxiliary networks



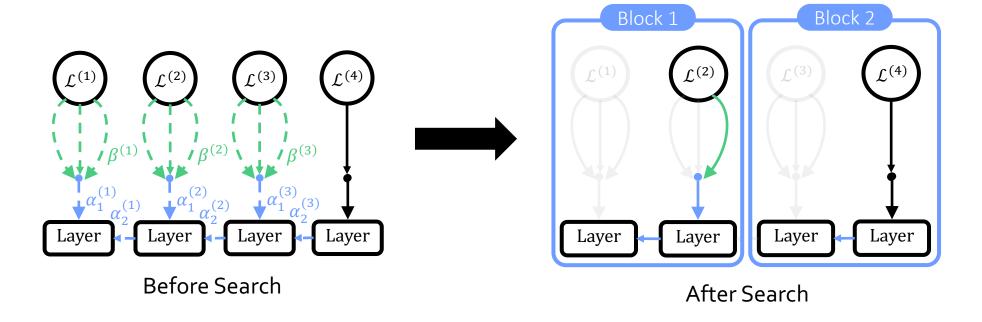
The two design decisions are critical to the performance

Our approach: Automating the discovery of the best configuration



Key Ideas

- 1. Formulating greedy block-wise learning with decision variables
- 2. Optimizing decision variables by gradient descent for efficiency & reusability



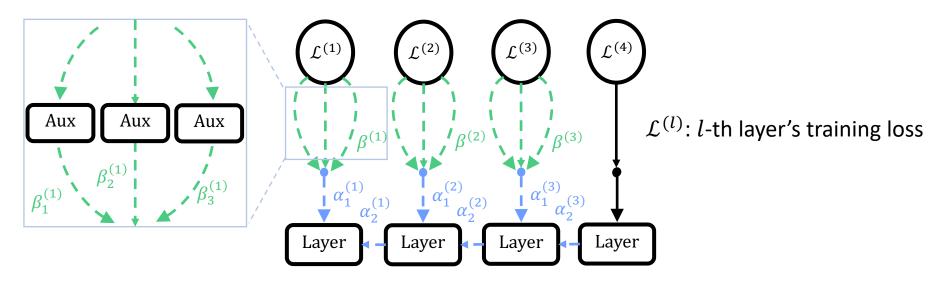
 $\mathcal{L}^{(l)}$: l-th layer's training loss

Decision Variables

How to group layers into blocks & How to design auxiliary networks

Equivalent to making two types of decisions at every (non-last) layer

- 1. Whether to use local or backpropagated gradients
 - \rightarrow Signal variable $\alpha^{(l)} \in \{0,1\}^2$
- 2. Which auxiliary network to use among M candidates
 - \rightarrow Auxiliary type variable $\beta^{(l)} \in \{0,1\}^M$

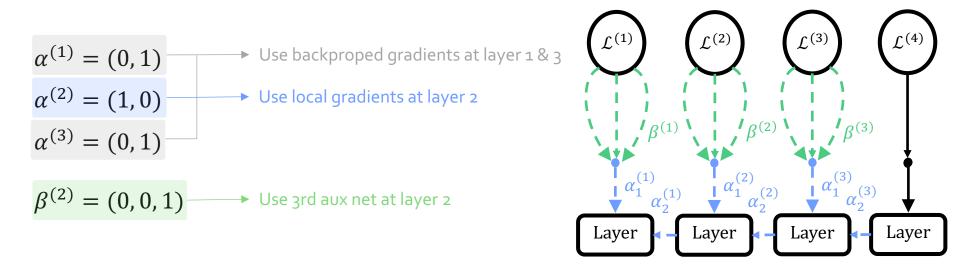


Decision Variables

How to group layers into blocks & How to design auxiliary networks

Equivalent to making two types of decisions at every (non-last) layer

- 1. Whether to use local or backpropagated gradients
 - \rightarrow Signal variable $\alpha^{(l)} \in \{0,1\}^2$
- 2. Which auxiliary network to use
 - \rightarrow Auxiliary type variable $\beta^{(l)} \in \{0,1\}^M$ (M aux. candidates)

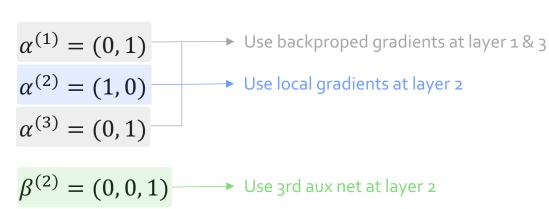


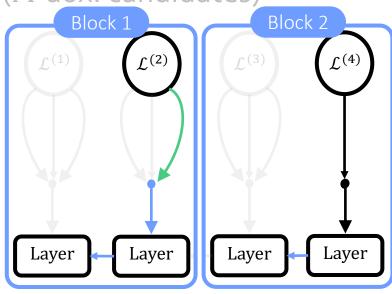
Decision Variables

How to group layers into blocks & How to design auxiliary networks

Equivalent to making two types of decisions at every (non-last) layer

- 1. Whether to use local or backpropagated gradients
 - \rightarrow Signal variable $\alpha^{(l)} \in \{0,1\}^2$
- 2. Which auxiliary network to use
 - \rightarrow Auxiliary type variable $\beta^{(l)} \in \{0,1\}^M$ (M aux. candidates)



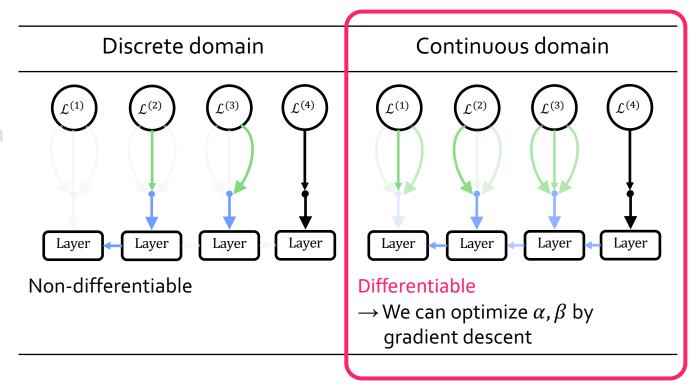


3 steps

- 1. Continuous relaxation
 - Discrete domain → continuous domain
- 2. Bilevel optimization
 - Optimize relaxed decision variables
- 3. Discretization
 - Continuous domain → discrete domain

3 steps

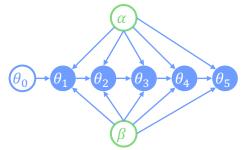
- Continuous relaxation
 Discrete domain → continuous domain
- Bilevel optimization
 Optimize relaxed decision variables
- Discretization
 Continuous domain → discrete domain



3 steps

- Continuous relaxation
 Discrete domain → continuous domain
- Bilevel optimization
 Optimize relaxed decision variables
- Discretization
 Continuous domain → discrete domain

• Inner-level optimization Perform gradient steps on layer weights θ

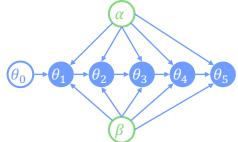


Outer-level optimization

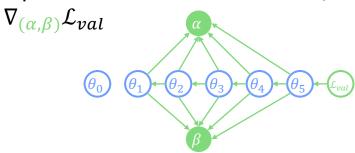
3 steps

- Continuous relaxation
 Discrete domain → continuous domain
- Bilevel optimization
 Optimize relaxed decision variables
- Discretization
 Continuous domain → discrete domain

• Inner-level optimization Perform gradient steps on layer weights θ



• Outer-level optimization Update decision variables α , β by descending



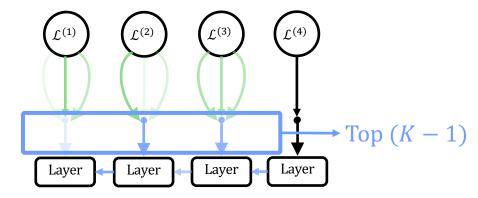
3 steps

- Continuous relaxation
- Discrete domain → continuous domain

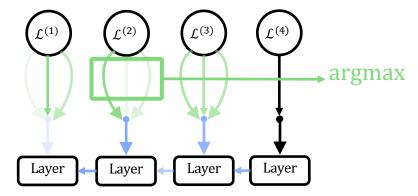
 2. Bilevel optimization
 - Optimize relaxed decision variables
- Discretization
 Continuous domain → discrete domain
 - $\alpha \& \beta$ are reusable for any desired K

K: # blocks (desired level of parallelism)

Grouping layers into K blocks



Selecting auxiliary networks



Better generalization than backprop & other greedy-learning methods

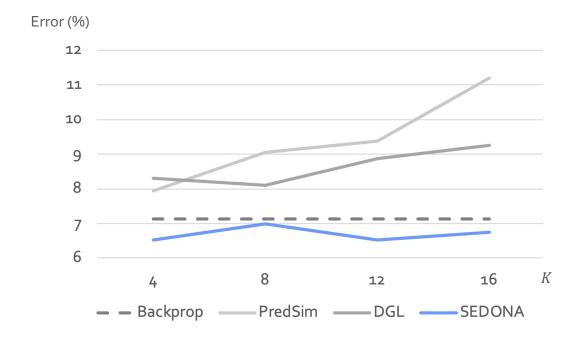
• *K*: # blocks

Error Rates (%) on CIFAR-10 (1st, 2nd)

Architecture	Backprop	PredSim ^[1] $(K = 4)$	$ \begin{array}{c} DGL^{[2]}\\ (K=4) \end{array} $	SEDONA $(K = 4)$
VGG-19	12.31	13.87	12.19	11.58
ResNet-50	7.99	8.93	8.27	7.53
ResNet-101	7.14	7.93	8.30	6.59
ResNet-152	6.35	7.41	7.39	6.13

Maintain the good performance even when # blocks increases

• *K*: # blocks



ResNet-101, CIFAR-10

Decouplings found on CIFAR-10 can be transferable to ImageNet

• *K*: # blocks

ResNet-101, ImageNet (1st, 2nd)	ResNet-101	, ImageNet	(1 st ,	2 nd)
---------------------------------	------------	------------	--------------------	-----------------	---

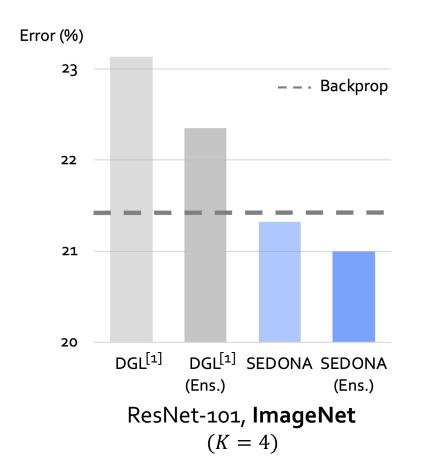
Method	K	Top-1 Err (%)	Top-1 Err (%)	Training Speedup
Backprop	1	21.34	5.86	1
DGL ^[1]	2	21.53	5.84	1.42
	4	23.13	6.82	1.92
SEDONA	2	20.72	5.39	1.67
	4	21.32	5.83	2.01

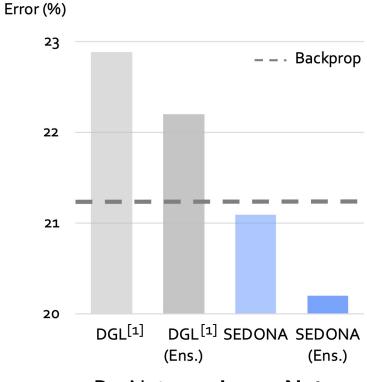
ResNet-152, **ImageNet** (1st, 2nd)

Method	K	Top-1 Err (%)	Top-1 Err (%)	Training Speedup
Backprop	1	21.22	5.79	1
DGL ^[1]	2	21.45	5.86	1.51
	4	22.89	6.80	2.23
SEDONA	2	20.69	5.58	1.61
	4	21.09	5.13	2.02

Further improvement is possible by ensembling found aux nets

• *K*: # blocks





Discussions

Grouping layers is more important than selecting auxiliary networks Especially, lower blocks seem to be a key to success of greedy learning

Concluding Remarks

Greedy block-wise learning has several benefits in terms of efficiency Well-configured greedy learning can outperform end-to-end backprop SEDONA automatically finds such good configurations

Thank you

Code https://vision.snu.ac.kr/projects/sedona

Paper https://openreview.net/forum?id=XLfdzwNKzch

Contact <u>mjpyeon@vision.snu.ac.kr</u>