Implicit Normalizing Flows

ICLR 2021 spotlight

Cheng Lu, Jianfei Chen, Chongxuan Li, Qiuhao Wang, Jun Zhu*

Requirements for Normalizing Flows

$$\log p_x(x) = \log p_z(f(x)) + \log \left| \det(rac{df(x)}{dx})
ight|$$

1. An invertible function 2. Tractable log-determinant of the Jacobian

A crucial problem: Finding **rich** model families that have **tractable** log-determinants.

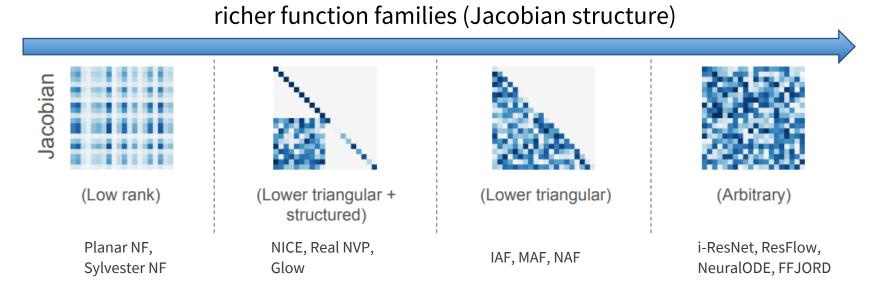


Figure from: http://www.cs.toronto.edu/~rtqichen/pdfs/residual_flows_slides.pdf

Lipschitz constraints of Jacobians

-- f(--)

Free-form is not enough

Additive Coupling

$$egin{aligned} \mathbf{y} &= f(\mathbf{x}) \ \mathbf{y}_1 &= \mathbf{x}_1 \ \mathbf{y}_2 &= \mathbf{x}_2 + t(\mathbf{x}_1) \end{aligned}$$

Structured Jacobian $\operatorname{Lip}(f) \leq 1 + \operatorname{Lip}(t)$

Arbitrary Lipschitz

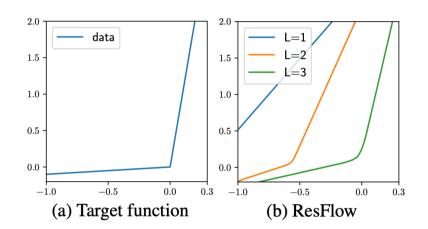
Residual Flows

$$\mathbf{y} = f(\mathbf{x}) = \mathbf{x} + g(\mathbf{x})$$

Free-form Jacobian

$$\operatorname{Lip}(f) \leq 1 + \operatorname{Lip}(g) < 2$$

Bounded Lipschitz



A 1-D function fitting example.

Due to the Lipschitz constraints of ResFlows, fitting a function with Lipschitz constant L needs at least $\log_2 L$ layers.

Implicit Function Theorem

Another way to define invertible mappings

Let $F: \mathbb{R}^{2d} \to \mathbb{R}^d$ be a continuously differentiable function. Let z and x be two variables in \mathbb{R}^d . If $\frac{\partial F(z,x)}{\partial z}$ and $\frac{\partial F(z,x)}{\partial x}$ are invertible matrices for any $z, x \in \mathbb{R}^d$, then

$$F(\mathbf{z}, \mathbf{x}) = 0$$
 defines a unique and invertible mapping
 $f: \mathbb{R}^d \to \mathbb{R}^d$ such that $\mathbf{z} = f(\mathbf{x})$

A special case: for any previous normalizing flow model f(x) = z, define

$$F(\mathbf{z}, \mathbf{x}) = f(\mathbf{x}) - \mathbf{z}$$

Explicit invertible functions are special cases of implicit functions

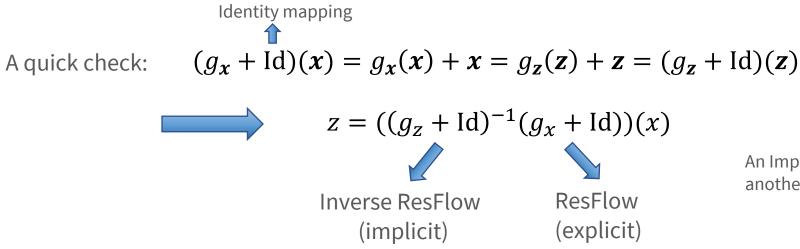
Implicit Normalizing Flow (ImpFlow)

Defined by a specific form of implicit functions

Let $g_z: \mathbb{R}^d \to \mathbb{R}^d$, $\operatorname{Lip}(g_z) < 1$, $g_x: \mathbb{R}^d \to \mathbb{R}^d$, $\operatorname{Lip}(g_x) < 1$, define

$$F(\mathbf{z}, \mathbf{x}) = g_{\mathbf{x}}(\mathbf{x}) - g_{\mathbf{z}}(\mathbf{z}) + \mathbf{x} - \mathbf{z}$$

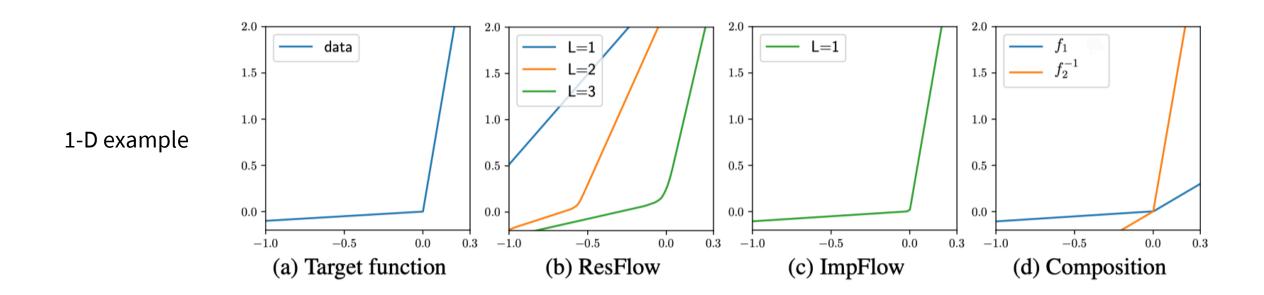
Then $F(\mathbf{z}, \mathbf{x}) = 0$ defines a **unique** and **invertible** mapping $f: \mathbb{R}^d \to \mathbb{R}^d$ such that $\mathbf{z} = f(\mathbf{x})$.



An Impflow is a composition of a forward ResFlow and another inverse ResFlow.

Relaxing the Lipschitz Constraints

Also have free-form Jacobians



Intuitively, the forward ResFlow handles small Lipschitz parts, and the inverse ResFlow handles large Lipschitz parts.

$$z = ((g_z + Id)^{-1}(g_x + Id))(x)$$

$$f_2^{-1} \qquad f_1$$

Main Theoretical Results

Function family of ImpFlows

Let \mathcal{D} be the set of all bi-Lipschitz C^1 invertible functions from \mathbb{R}^d to \mathbb{R}^d . Define

 $\mathcal{F} \coloneqq \{ f \in \mathcal{D} : \inf_{\mathbf{x} \in \mathbb{R}^d, \mathbf{v} \in \mathbb{R}^d, \|\mathbf{v}\|_2 = 1} \mathbf{v}^T J_f(\mathbf{x}) \mathbf{v} > 0 \} \quad \text{``monotonically increasing functions''}$

- 1-D case: $\mathcal{F} = \{ f \in C^1(\mathbb{R}) : \inf_{x \in \mathbb{R}} f'(x) > 0 \}$.
- Symmetric case: gradients of strongly convex functions.

Includes "Convex Potential Flows" (ICLR 2021) [1]

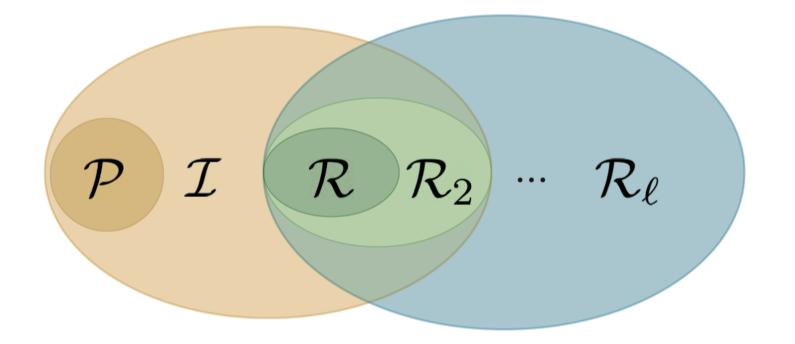
Theorem
$$\mathcal{I} = \mathcal{F}_2 \coloneqq \{f : f = f_2 \circ f_1 \text{ for some } f_1, f_2 \in \mathcal{F}\}.$$

Function family of single-layer ImpFlows

[1] Huang, Chin-Wei, et al. "Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization." arXiv preprint arXiv:2012.05942 (2020).

Main Theoretical Results

Relationship between 1-layer ImpFlow and *l*-layer ResFlow



1.
$$\mathcal{R} \subsetneqq \mathcal{R}_2 \gneqq \mathcal{I}$$
.

2-layer ResFlows are strictly included in 1-layer ImpFlows.

2.
$$orall \, \ell > 0, \,\, \mathcal{I}
ot \subseteq \mathcal{R}_\ell$$
 .

Any multi-layer ResFlows cannot include 1-layer ImpFlows.

Generative Modeling

Remains tractability

• Forward & Inverse: finding fixed point.

$$z = ((g_z + Id)^{-1}(g_x + Id))(x)$$

- 1. Simple fixed point iterations.
- 2. Quasi-Newton methods (i.e. Broyden's method).

• Log-determinant of Jacobians: the same unbiased estimator as ResFlows.

$$\ln p(\mathbf{x}) = \ln p(\mathbf{z}) + \ln \det(I + J_{g_{\mathbf{x}}}(\mathbf{x})) - \ln \det(I + J_{g_{\mathbf{z}}}(\mathbf{z}))$$

• Backpropagation for the fixed point: take total derivative of F(z, x) = 0.

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial (\cdot)} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}} J_G^{-1}(\mathbf{z}) \frac{\partial F(\mathbf{z}, \mathbf{x}; \theta)}{\partial (\cdot)}, \text{ where } G(\mathbf{z}; \theta) = g_{\mathbf{z}}(\mathbf{z}; \theta) + \mathbf{z}.$$

Model Expressiveness

Classification tasks

Table 1: Classification error rate (%) on test set of vanilla ResNet, ResFlow and ImpFlow of ResNet-18 architecture, with varying Lipschitz coefficients c.

		Vanilla	c = 0.99	c = 0.9	c = 0.8	c = 0.7	c = 0.6
CIFAR10	ResFlow	6.61(±0.02)	8.24 (±0.03)	8.39 (±0.01)	8.69 (±0.03)	9.25 (±0.02)	9.94 (±0.02)
	ImpFlow		7.29 (±0.03)	7.41 (±0.03)	7.94 (±0.06)	8.44 (±0.04)	9.22 (±0.02)
CIFAR100	ResFlow	$27.82(\pm 0.02)$	31.02 (±0.05)	31.88 (±0.02)	32.21 (±0.03)	33.58 (±0.02)	34.48 (±0.03)
	ImpFlow	27.83(±0.03)	29.06 (±0.03)	30.47 (±0.03)	31.40 (±0.03)	32.64 (±0.01)	34.17 (±0.02)

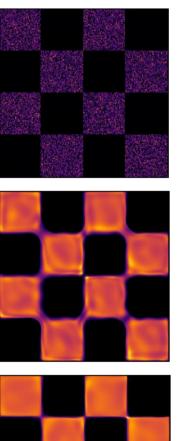
Density Estimation Experiments

Table 2: Average test log-likelihood (in nats) of tabular datasets. Higher is better.						
	POWER	GAS	HEPMASS	MINIBOONE	BSDS300	
RealNVP (Dinh et al., 2017)	0.17	8.33	-18.71	-13.55	153.28	
FFJORD (Grathwohl et al., 2019)	0.46	8.59	-14.92	-10.43	157.40	
MAF (Papamakarios et al., 2017)	0.24	10.08	-17.70	-11.75	155.69	
NAF (Huang et al., 2018)	0.62	11.96	-15.09	-8.86	157.73	
ImpFlow $(L = 20)$	0.61	12.11	-13.95	-13.32	155.68	
ResFlow ($L = 10$)	0.26	6.20	-18.91	-21.81	104.63	
ImpFlow $(L = 5)$	0.30	6.94	-18.52	-21.50	113.72	

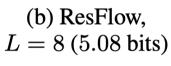
Table 2: Average test log-likelihood (in nate) of tabular datasets. Higher is better

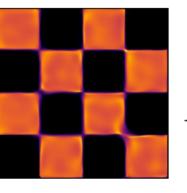
Table 3: Average bits per dimension of ResFlow and ImpFlow on CIFAR10, with varying Lipschitz coefficients c. Lower is better.

	c = 0.9	c = 0.8	c = 0.7	c = 0.6
ResFlow $(L = 12)$		3.533(±0.0002)	3.627(±0.0004)	3.820(±0.0003)
ImpFlow $(L = 6)$		3.511 (±0.0002)	3.607 (±0.0003)	3.814(±0.0005)



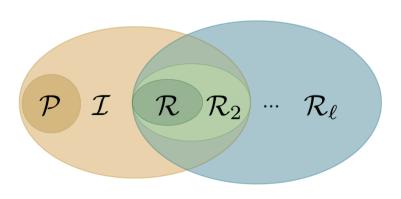
(a) Checkerboard data (5.00 bits)

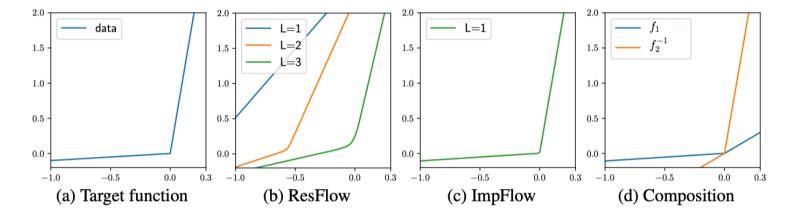




Summary

- A unique and invertible mapping defined by a specific form of implicit functions.
- A more **powerful function space** than ResFlows, which relaxing the **Lipschitz constraints** of ResFlows.
- A scalable algorithm for generative modeling.





Thanks for Listening!

• ICLR 2021 poster ID: 3381

• Released Code: <u>https://github.com/thu-ml/implicit-normalizing-flows</u>

• Contact: <u>lucheng.lc15@gmail.com</u>