## Plan-Based Relaxed Reward Shaping for Goal-Directed Tasks

Ingmar Schubert<sup>1</sup>, Ozgur S. Oguz<sup>2,3</sup>, and Marc Toussaint<sup>1,2</sup>

<sup>1</sup>Learning and Intelligent Systems Group, TU Berlin, Germany <sup>2</sup>Max Planck Institute for Intelligent Systems, Stuttgart, Germany <sup>3</sup>University of Stuttgart, Germany

ICLR 2021

## RL with sparse rewards is limited by exploration. This can be adressed by Reward Shaping.

$$R(s, a, s') \leftarrow R(s, a, s') + F(s, a, s')$$

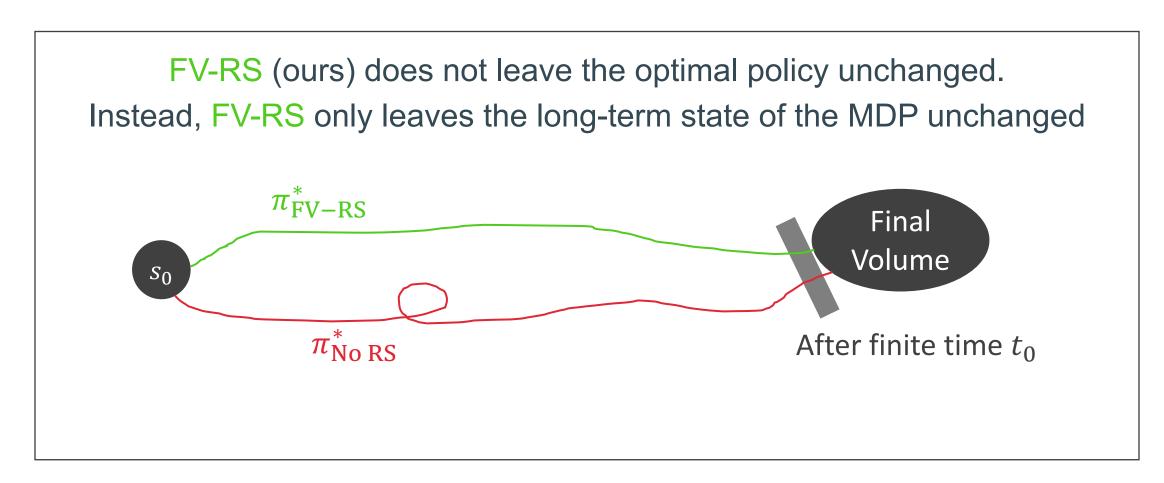
Potential-Based Reward Shaping (PB-RS)

[Ng et al., 1999]

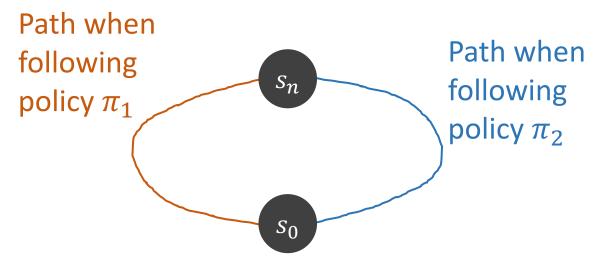
$$F_{\text{PB-RS}}(s, a, s') = \gamma \Phi(s') - \Phi(s)$$

Guarantees invariance of the optimal policy

$$\pi_{\text{No RS}}^* \equiv \pi_{\text{PB-RS}}^*$$


Final-Volume-Preserving Reward Shaping (FV-RS, ours)

Allows for more general  $F_{\text{FV-RS}}$ 


Does not guarantee invariance of the optimal policy

$$\pi_{\text{No RS}}^* \not\equiv \pi_{\text{FV-RS}}^*$$

## FV-RS relaxes the invariance guarantee of PB-RS to a guarantee of invariant long-term behavior



# As a result, FV-RS can introduce information in a more direct way than PB-RS



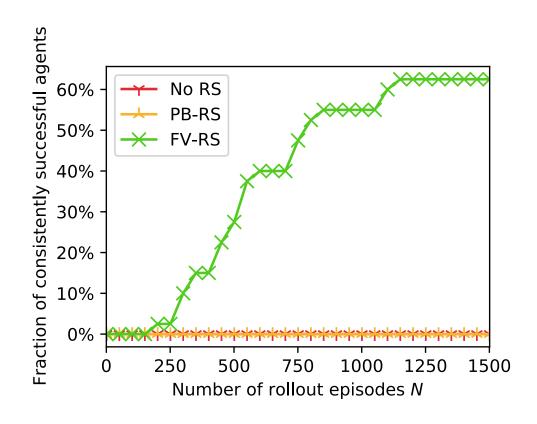


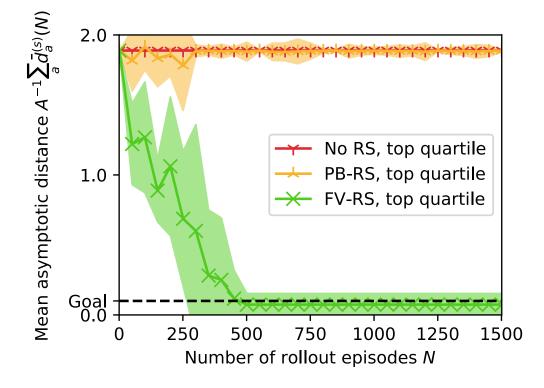
- PB-RS:  $V_{\pi_1}(s_0) = V_{\pi_2}(s_0) = \gamma^n \Phi(s_n) \Phi(s_0)$
- FV-RS:  $V_{\pi_1}(s_0) > V_{\pi_2}(s_0)$

With PB-RS, a policy's value only depends on the initial and final state. With FV-RS, a policy's value can depend on all states along the trajectory.

### Experiments

#### We compare in a plan-based setting:


- 1. Potential-Based reward shaping (PB-RS)
- 2. Final-Volume-Preserving reward shaping (FV-RS, ours)


#### Using simulated robotic manipulation examples:

- 1. Pushing task (4 examples)
- 2. Pick-and-place task (2 examples)

## Pushing Task: Example 1

FV-RS (ours) increases sample efficiency significantly over PB-RS





## Improved efficiency of FV-RS is consistent...

...across all examples

• ...when using different RL algorithms (DDPG<sup>1</sup> and PPO<sup>2</sup>)

...when using different shaping functions for FV-RS and PB-RS

### Summary

- We introduce FV-RS
- We propose to use FV-RS for plan-based reward shaping
- We demonstrate the increased sample efficiency of FV-RS over PB-RS in various plan-based robotic manipulation tasks

## Join us at poster session 2 (May 3, 9 a.m. PDT)

Task 1:
Best agent using PB-RS
Best agent using FV-RS (ours)