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Learning rate (LR)

loss

* Learning rate is a parameter that
determines the step size at each
iteration of the optimization problem.

low learning rate

* The success of training DNNs largely

high learning rate
depends on the LR schedule.

good learning rate
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Tuning the learning rate (LR) schedule is non-trivial

Widely-used tuning strategies:
* Pre-defined LR schedules
* Limited number of choices, e.g., step decay & cosine decay
* Optimization methods with adaptive LR (such as Adam and AdaDelta)

* Still require a global learning rate schedule: Adam's default LR performs poorly
in training BERT and Transformer

Both strategies introduce new hyper-parameters that have to be tuned
separately for different tasks, datasets, and batch sizes.



Can we automatically tune the LR over the course of training
without human involvement?




AutolLRS

Coarse-grained approach: determining a constant LR for every 1 steps =) “training stage”

Which LR can LR

minimize the
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AutolLRS

» Bayesian optimization (BO)
* Treat the validation loss w.r.t. LR as a black-box function.
* BO would require 1 training steps to measure the validation loss associated with
every LR n it explores. > Computationally expensive
» Exponential forecasting model

* For each LR n that BO explores, we only apply it for 7> << T steps and use the
validation loss observed in the T’ steps to train a time-series forecasting model.
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Search for the LR at the beginning of each stage

LR to explore n loss series yy.
( ) Exponential
\ bk J model
train with n for 7’ steps
best LR n*
[ D|:|N ] Predicted loss in T steps

train with n* for t steps

* Each LR evaluation during BO starts at the same model parameter checkpoint
* 17 =1/10; BO explores 10 LRs in each stage
—> steps spent to find the LR
= steps spent on training the model with the identified LR.



Experiments

* Models: ResNet-50, Transformer, BERT Pre-training

e Baselines:
* LR schedule adopted in each model’s original paper
* Highly hand-tuned Cyclical Learning Rate (CLR) 1]
* Highly hand-tuned Stochastic Gradient Descent with Warm Restarts (SGDR) [2]

[1] Leslie N Smith. Cyclical learning rates for training neural networks. WACV’17.
[2] llya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. ICLR’17.



ResNet-50

LR schedules

1.22x faster convergence
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Transformer

1.43x faster convergence

LR schedules BLEU
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BERT
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Learning Rate
D

1.5x faster convergence

LR schedules (Phase 1 + 2)
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AUtoLRS Summary

=» Aid ML practitioners with automatic and efficient LR schedule
search for the DNNs

* We perform LR search for each training stage and solve it by Bayesian optimization.

* We train a light-weight exponential forecasting model from the training dynamics
of BO exploration.

* AutoLRS achieves a speedup of 1.22x, 1.43x, and 1.5x on training ResNet-50,
Transformer, and BERT compared to their highly hand-tuned LR schedules.

Give It a try: https://github.com/Yuchenlin/autolrs



