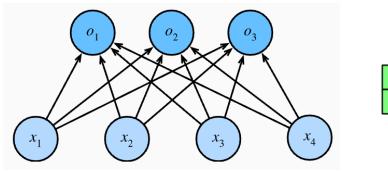
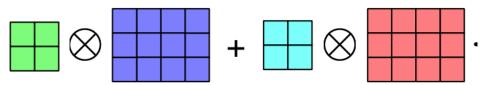
Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters

Aston Zhang, Yi Tay, Shuai Zhang, Alvin Chan, Anh Tuan Luu, Siu Cheung Hui, Jie Fu

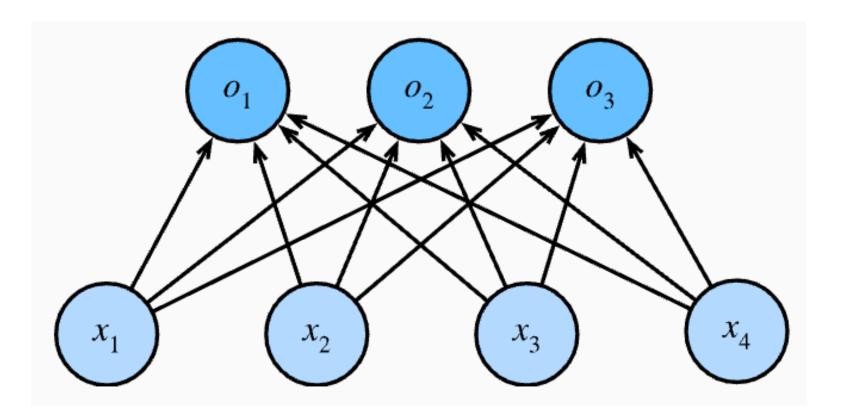
ICLR'21





Fully-connected (FC) layers are pervasive

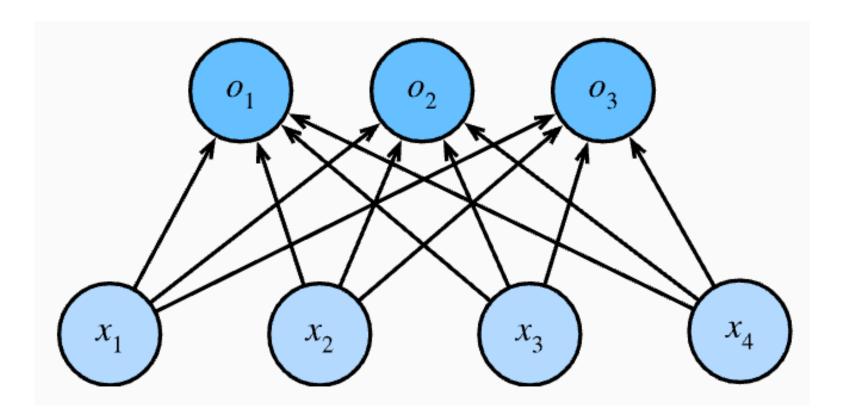
$$\mathbf{y} = \mathrm{FC}(\mathbf{x}) = \mathbf{W}\mathbf{x} + m{b}$$
 \mathbb{R}^k



Zhang et al. Dive into Deep Learning https://d2l.ai/chapter_linear-networks/softmax-regression.html

FC layers are heavily parameterized

$$\mathbf{y} = \mathrm{FC}(\mathbf{x}) = \mathbf{W}\mathbf{x} + m{b}$$
 \mathbb{R}^k



Parameterization cost:

 $\mathcal{O}(kd)$

Zhang et al. Dive into Deep Learning https://d2l.ai/chapter linear-networks/softmax-regression.html

FC layers with quaternions

• Quaternion: 4-dimensional hypercomplex number with one real component and three imaginary components

$$Q = Q_r + Q_x \mathbf{i} + Q_y \mathbf{j} + Q_z \mathbf{k}$$

Hamilton product: (multiplication of two quaternions Q and P):

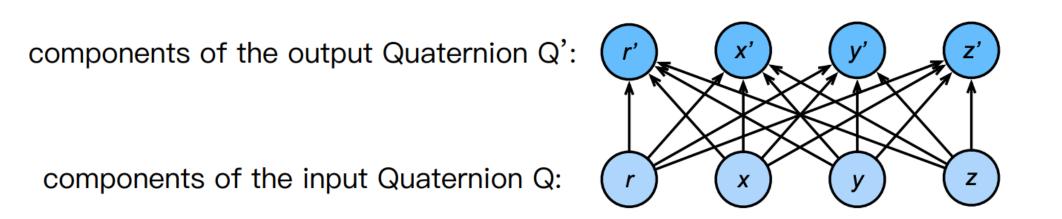
$$Q \otimes P = (Q_r P_r - Q_x P_x - Q_y P_y - Q_z P_z) + (Q_x P_r + Q_r P_x - Q_z P_y + Q_y P_z) \mathbf{i} + (Q_y P_r + Q_z P_x + Q_r P_y - Q_x P_z) \mathbf{j} + (Q_z P_r - Q_y P_x + Q_x P_y + Q_r P_z) \mathbf{k}$$

• FC layers with quaternions: replace real-valued matrix multiplications in FC layers with Hamilton products of quaternions

FC layers with quaternions has 1/4 parameters

By re-using parameters 4 times via Hamilton Products

$$\begin{bmatrix} W_r & -W_x & -W_y & -W_z \\ W_x & W_r & -W_z & W_y \\ W_y & W_z & W_r & -W_x \\ W_z & -W_y & W_x & W_r \end{bmatrix} \begin{bmatrix} r \\ x \\ y \\ z \end{bmatrix}$$



pairwise connections with weight parameter variables:



Tay et al. Lightweight and Efficient Neural Natural Language Processing with Quaternion Networks (ACL'19)

We propose to parameterize hypercomplex multiplications

- Hypercomplex multiplication rules only exist at very few predefined dimensions (4D, 8D, and 16D)
- We learn multiplication rules from data regardless of whether such rules are predefined
- We provide more architectural flexibility using arbitrarily 1/n learnable parameters compared with the FC layer counterpart

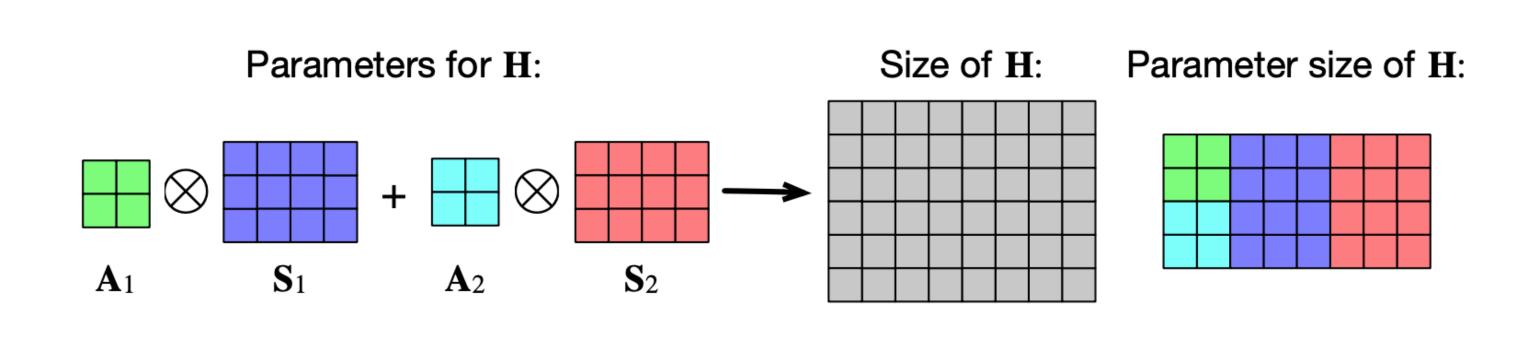
We propose parameterized hypercomplex multiplication (PHM) layers with 1/n parameters

$$\mathbf{y} = \mathrm{PHM}(\mathbf{x}) = \mathbf{H}\mathbf{x} + m{b}$$
 \mathbb{R}^d

By re-using parameters n times via sum of n Kronecker Products

$$\mathbf{H} = \sum_{i=1}^n \mathbf{A}_i \otimes \mathbf{S}_i$$

$$\mathbf{X} \otimes \mathbf{Y} = egin{bmatrix} x_{11}\mathbf{Y} & \dots & x_{1n}\mathbf{Y} \ drawnowline & \ddots & drawnowline \ x_{m1}\mathbf{Y} & \dots & x_{mn}\mathbf{Y} \end{bmatrix}$$



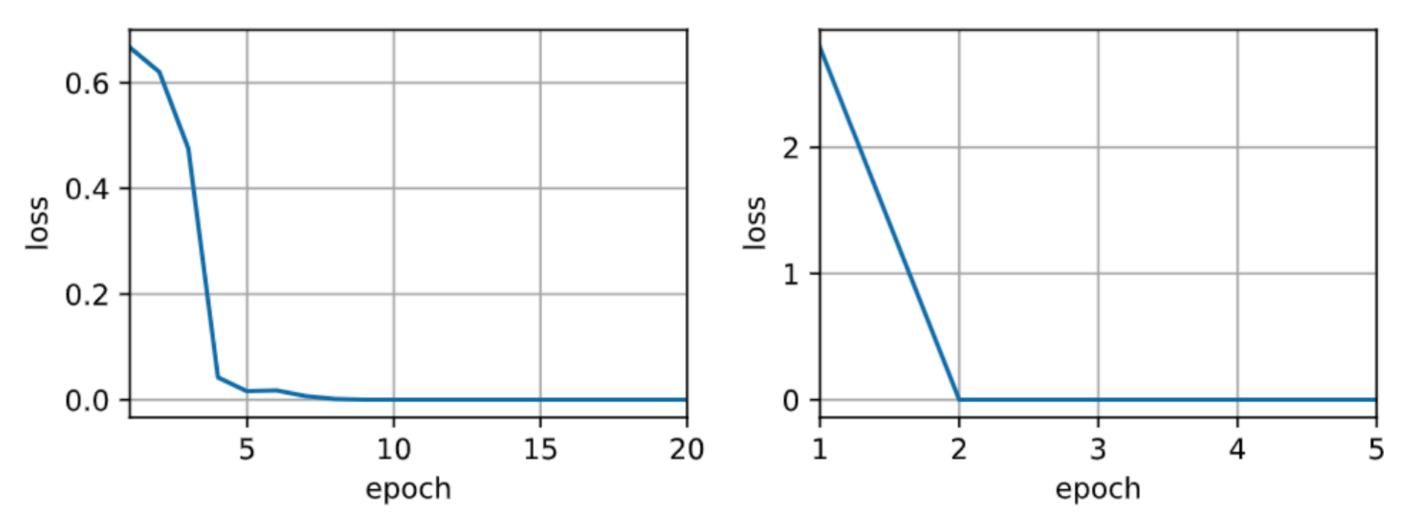
Parameterization $\mathcal{O}(kd/n)$ cost:

PHM layers subsume hypercomplex multiplications and real-valued matrix multiplications

Hamilton product by PHM layers

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\mathbf{A}_1} \otimes \underbrace{\begin{bmatrix} Q_r \end{bmatrix}}_{\mathbf{S}_1} + \underbrace{\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\mathbf{A}_2} \otimes \underbrace{\begin{bmatrix} Q_x \end{bmatrix}}_{\mathbf{S}_2} + \underbrace{\begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}}_{\mathbf{A}_3} \otimes \underbrace{\begin{bmatrix} Q_y \end{bmatrix}}_{\mathbf{S}_3} + \underbrace{\begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}}_{\mathbf{A}_4} \otimes \underbrace{\begin{bmatrix} Q_z \end{bmatrix}}_{\mathbf{S}_4}$$

PHM layers can learn to perform existing multiplication rules



(a) Learning rotations in 3D real space

(b) Learning Hamilton products in Quaternion space

PHM-LSTM and PHM-transformer replace FC layers or matrix multiplications with PHM layers

PHM-LSTM

$$\mathbf{y}_t = \operatorname{PHM}(\mathbf{x}_t) + \operatorname{PHM}(\mathbf{h}_{t-1}) + \mathbf{b}$$
 $\mathbf{f}_t, \mathbf{i}_t, \mathbf{o}_t, \mathbf{x}_t' = \phi(\mathbf{y}_t)$
 $\mathbf{c}_t = \sigma_s(\mathbf{f}_t) \mathbf{c}_{t-1} + \sigma_s(\mathbf{i}_t) \sigma_t(\mathbf{x}_t')$
 $\mathbf{h}_t = \mathbf{o}_t \odot \mathbf{c}_t,$

PHM-transformer

Single-head self-attention:

$$\mathbf{Q}, \mathbf{K}, \mathbf{V} = \Phi(\mathrm{PHM}(\mathbf{X}))$$

$$\mathbf{A} = \mathrm{softmax}(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_k}})\mathbf{V}$$

Multi-head aggregation:

$$\mathbf{X} = \mathrm{PHM}([\mathbf{H}_1; \dots; \mathbf{H}_{N_h}])$$

Position-wise FFN:

$$\mathbf{Y} = PHM(ReLU(PHM(\mathbf{X})))$$

PHM layers can reduce parameters and improve performance with flexible choices of n for LSTMs on NLI tasks

Table 1: Experimental results of natural language inference (accuracy) on five different datasets. The PHM-LSTM reduces the parameters of the standard LSTM model and improves or partially matches performance on four out of five datasets.

Model	#Params	MNLI	QNLI	SNLI	DNLI	SciTail
LSTM	721K	71.82 / 71.89 71.57 / 72.19	84.44	84.18	85.16	74.36
Quaternion LSTM	180K (-75.0%)		84.73	84.21	86.45	75.58
PHM-LSTM $(n = 2)$	361K (-49.9%)	71.82 / 72.08	84.39	84.38	85.77	77.47
PHM-LSTM $(n = 5)$	146K (-79.7%)	71.80 / 71.77	83.87	84.58	86.47	74.64
PHM-LSTM $(n = 10)$	81K (-88.7%)	71.59 / 71.59	84.25	84.40	86.21	77.84

PHM layers can reduce parameters and improve performance with flexible choices of n for transformers on NMT tasks

Table 2: Experimental results of machine translation (BLEU) on seven different datasets. Symbol † represents re-scaling the parameters with a factor of 2 by doubling the hidden size. The PHM-transformer does not lose much performance despite enjoying parameter savings. Re-scaling can lead to improvement in performance.

Model	#Params	En-Vi	En-Id	De-En	Ro-En	En-Et	En-Mk	En-Ro
Transformer (Tm) Quaternion Tm	44M 11M (-75.0%)	28.43 28.00	47.40 42.22	36.68 32.83	34.60 30.53	14.17 13.10	13.96 13.67	22.79 18.50
PHM-Tm $n=2$ PHM-Tm $n=4$ PHM-Tm $n=8$ PHM-Tm $n=16$	22M (-50.0%) 11M (-75.0%) 5.5M (-87.5%) 2.9M (-93.4%)	29.25 29.13 29.34 29.04	46.32 44.13 40.81 33.48	35.52 35.53 34.16 33.89	33.40 32.74 31.88 31.53	14.98 14.11 13.08 12.15	13.60 13.01 12.95 11.97	21.73 21.19 21.66 19.63
PHM-Tm † $n=2$ PHM-Tm † $n=4$ PHM-Tm † $n=8$	44M 22M (-50.0%) 11M (-75.0%)	29.54 29.17 29.47	49.05 46.24 43.49	34.32 34.86 34.71	33.88 33.80 32.59	14.05 14.43 13.75	14.41 13.78 13.78	22.18 21.91 21.43

PHM layers do not increase much computational cost in practice

Table 3: Training time (seconds per 100 steps) and inference time (seconds to decode test sets) with beam size of 4 and length penalty of 0.6 on the IWSLT'14 German-English dataset.

Model	Transformer (Tm)	Quaternion Tm	PHM-Tm $(n = 4)$	PHM-Tm $(n = 8)$
Training time Inference time	7.61 336	8.11 293	7.92 299	7.70 282

PHM layers can reduce parameters and improve performance with flexible choices of n for transformers on more tasks

Text style transfer

Model		#Params	BLEU
Transformer (Tm)		44M	11.65
PHM-Tm	(n=2)	22M (-50.0%)	12.20
PHM-Tm	(n = 4)	11M (-75.0%)	12.42
PHM-Tm	(n = 8)	5.5M (-87.5%)	11.66
PHM-Tm	(n = 16)	2.9M (-93.4%)	10.76

Subject verb agreement

Model		#Params	Acc
Transformer (Tm) Quaternion Tm		400K 100K	94.80 94.70
PHM-Tm PHM-Tm PHM-Tm	(n=4)	200K (-50.0%) 101K (-74.8%) 56K (-86.0%)	95.14 95.05 95.62

Summary

- Parameterized hypercomplex multiplication (PHM) layers learn multiplication rules from data using arbitrarily 1/n parameters compared with the fully-connected layer counterpart
- PHM layers can improve LSTMs and transformers on multiple NLP tasks