

Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization

Tatsuya Matsushima^{1*}, Hiroki Furuta^{1*}, Yutaka Matsuo¹,
Ofir Nachum², Shixiang Shane Gu²

¹The University of Tokyo, ²Google Brain (*Contributed Equally)

Contact: matsushima@weblab.t.u-tokyo.ac.jp

Motivation: Reducing Cost & Risks for RL

Impressive success of reinforcement learning (RL) algorithms in sequential decision making

Depends on frequent data-collection & policy update

Online RL

Motivation: Reducing Cost & Risks for RL

Impressive success of reinforcement learning (RL) algorithms in sequential decision making

Depends on frequent data-collection & policy update

But, potential risks and costs for deploying new exploratory policies

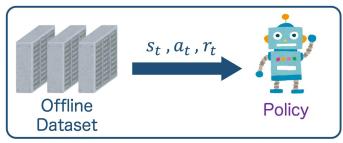
• e.g. robot control, medicine and education

Online RL

Related Framework: Offline RL

Offline RL learns policies only from a fixed dataset

Offline RL (No Additional Data Collection)



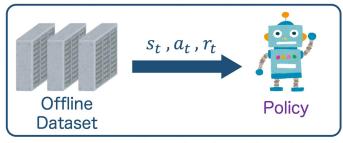
Learning from Fixed Dataset

Related Framework: Offline RL

Offline RL learns policies only from a fixed dataset

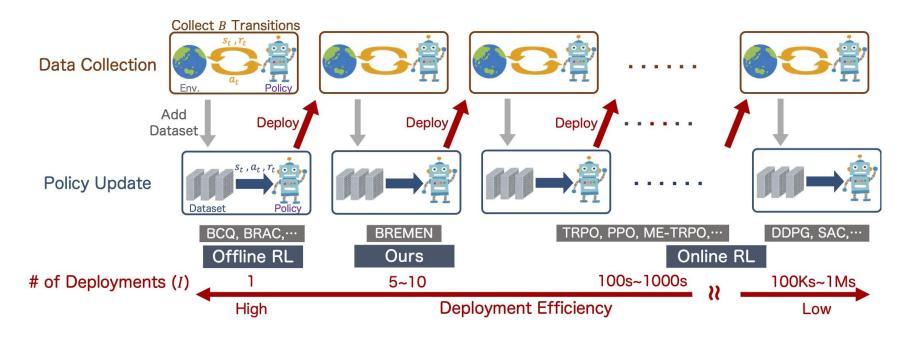
- Assumes we already have some datasets with suboptimal performance
- Usually not learning from scratch (random policy)

Offline RL (No Additional Data Collection)



Deployment-Efficiency: A New Metric for RL

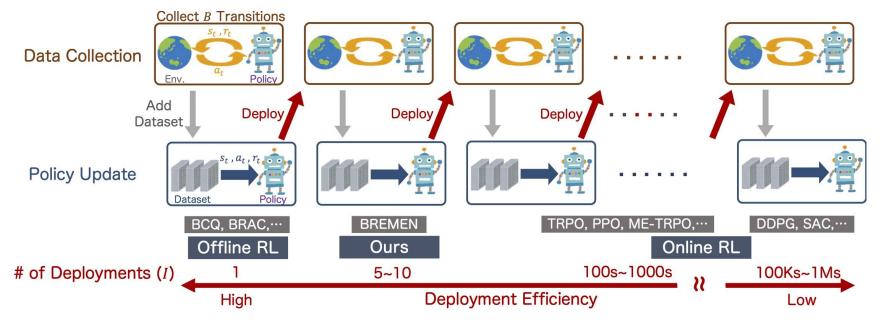
Counts # of "deployments" of the policy



Deployment-Efficiency: A New Metric for RL

Counts # of "deployments" of the policy

 Even algorithms with high sample-efficiency, the deployment-efficiency may be very low e.g. SAC



The Problem & Solution

Problem: Low Sample-Efficiency in previous Offline RL methods

 Simply repeating offline update is not applicable for limited deployment setting (from random policy)

The Problem & Solution

Problem: Low Sample-Efficiency in previous Offline RL methods

 Simply repeating offline update is not applicable for limited deployment setting (from random policy)

Solution: Develop model-based offline RL methods & repeat optimizing it!

MBRL methods are sample-efficient in online RL

BREMEN (Behaviour-Regularized Model Ensemble)

We propose **BREMEN**

- A model-based offline RL method
- Achieve high sample- & deployment-efficiency

BREMEN (Behaviour-Regularized Model Ensemble)

We propose **BREMEN**

- A model-based offline RL method
- Achieve high sample- & deployment-efficiency

Tricks for efficient & stable policy improvement

- 1. Learning policy with ensembled dynamics model
- 2. Conservative policy update with behavior policy initialization

Trick 1. Model Ensemble

Learning policy from imaginally rollouts generated by dynamics model ensemble

Trick 1. Model Ensemble

Learning policy from imaginally rollouts generated by dynamics model ensemble

- Prevent policy from exploiting model bias
- Learn K dynamics models with different initialization from dataset with MSE

$$\hat{f}_{\phi} = \left\{\hat{f}_{\phi_1}, \dots, \hat{f}_{\phi_K}
ight\} \qquad \min_{\phi_i} rac{1}{|\mathcal{D}|} \sum_{(s_t, a_t, s_{t+1}) \in \mathcal{D}} rac{1}{2} \left\|s_{t+1} - \hat{f}_{\phi_i}\left(s_t, a_t
ight)
ight\|_2^2$$

Trick 1. Model Ensemble

Learning policy from imaginally rollouts generated by dynamics model ensemble

- Prevent policy from exploiting model bias
- Learn K dynamics models with different initialization from dataset with MSE

$$\hat{f}_{\phi} = \left\{\hat{f}_{\phi_1}, \dots, \hat{f}_{\phi_K}
ight\} \qquad \min_{\phi_i} rac{1}{|\mathcal{D}|} \sum_{(s_t, a_t, s_{t+1}) \in \mathcal{D}} rac{1}{2} \left\|s_{t+1} - \hat{f}_{\phi_i}\left(s_t, a_t
ight)
ight\|_2^2$$

 In policy learning, randomly pick up one dynamics model and rollout next state for every step

$$a_t \sim \pi_{\theta}(\cdot|\hat{s}_t), \quad \hat{s}_{t+1} = \hat{f}_{\phi_i}(\hat{s}_t, a_t) \quad \text{where} \quad i \sim \{1 \cdots K\}$$

Trick 2. Conservative Update with Regularization

Estimate behavior policy from dataset (BC)

$$\min_{\beta} \frac{1}{|\mathcal{D}|} \sum_{(s_t, a_t) \in \mathcal{D}} \frac{1}{2} \left\| a_t - \hat{\pi}_{\beta} \left(s_t \right) \right\|_2^2$$

Trick 2. Conservative Update with Regularization

Estimate behavior policy from dataset (BC)

$$\min_{\beta} \frac{1}{|\mathcal{D}|} \sum_{(s_t, a_t) \in \mathcal{D}} \frac{1}{2} \left\| a_t - \hat{\pi}_{\beta} \left(s_t \right) \right\|_2^2$$

KL trust-region policy update initialized with BC policy

$$\theta_{k+1} = \underset{\theta}{\operatorname{arg\,max}} \underset{s,a \sim \pi_{\theta_k}, \hat{f}_{\phi_i}}{\mathbb{E}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s,a) \right]$$
s.t.
$$\underset{s \sim \pi_{\theta_k}, \hat{f}_{\phi_i}}{\mathbb{E}} \left[D_{\mathrm{KL}} \left(\pi_{\theta}(\cdot|s) \| \pi_{\theta_k}(\cdot|s) \right) \right] \leq \delta, \quad \pi_{\theta_0} = \operatorname{Normal}(\hat{\pi}_{\beta}, 1)$$

Trick 2. Conservative Update with Regularization

Estimate behavior policy from dataset (BC)

$$\min_{\beta} \frac{1}{|\mathcal{D}|} \sum_{(s_t, a_t) \in \mathcal{D}} \frac{1}{2} \left\| a_t - \hat{\pi}_{\beta} \left(s_t \right) \right\|_2^2$$

KL trust-region policy update initialized with BC policy

$$\theta_{k+1} = \arg\max_{\theta} \underset{s, a \sim \pi_{\theta_k}, \hat{f}_{\phi_i}}{\mathbb{E}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \right]$$
s.t.
$$\underset{s \sim \pi_{\theta_k}, \hat{f}_{\phi_i}}{\mathbb{E}} \left[D_{\text{KL}} \left(\pi_{\theta}(\cdot|s) \| \pi_{\theta_k}(\cdot|s) \right) \right] \leq \delta, \quad \pi_{\theta_0} = \text{Normal}(\hat{\pi}_{\beta}, 1)$$

 Works as an implicit KL regularization, as opposed to explicit penalties to value or immediate reward in previous works

Overview of BREMEN

In limited deployment-setting, recursively apply offline BREMEN procedure

Algorithm 1 BREMEN for Deployment-Efficient RL

Input: Empty dataset \mathcal{D}_{all} , \mathcal{D} , Initial parameters $\phi = \{\phi_1, \dots, \phi_K\}$, β , Number of policy optimization T, Number of deployments I.

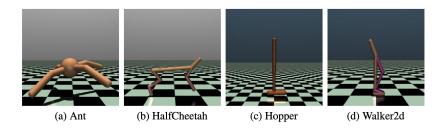
- 1: Randomly initialize the target policy π_{θ} .
- 2: for deployment $i = 1, \dots, I$ do
- 3: Collect B transitions in the true environment using π_{θ} and add them to dataset $\mathcal{D}_{all} \leftarrow \mathcal{D}_{all} \cup \{s_t, a_t, r_t, s_{t+1}\}, \mathcal{D} \leftarrow \{s_t, a_t, r_t, s_{t+1}\}.$
- 4: Train K dynamics models \hat{f}_{ϕ} using \mathcal{D}_{all} via Equation 1.
- 5: Train estimated behavior policy $\hat{\pi}_{\beta}$ using \mathcal{D} by behavior cloning via Equation 3.
- 6: Re-initialize target policy $\pi_{\theta_0} = \text{Normal}(\hat{\pi}_{\beta}, 1)$. Trick 2. Initialization w/ BC policy
- 7: **for** policy optimization $k = 1, \dots, T$ **do**
- 8: Generate imaginary rollout via Equation 2. Trick 1. Rollout from ensembles
- 9: Optimize target policy π_{θ} satisfying Equation 4 with the rollout.

Experiments

Benchmarking Offline RL

Learn policies from fixed datasets of 1M steps with certain cumulative reward

Same experimental protocol as the previous work [Wu+19]

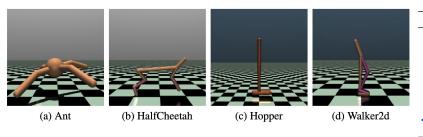


Benchmarking Offline RL

Learn policies from fixed datasets of 1M steps with certain cumulative reward

Same experimental protocol as the previous work [Wu+19]

Achieves competitive with SoTA model-free algorithms in locomotion tasks



1,000,000 (1M) transitions							
Method	Ant	HalfCheetah	Hopper	Walker2d			
Dataset	1191	4126	1128	1376			
BC	1321±141	4281±12	1341±161	1421 ± 147			
BCQ	2021±31	5783±272	1130±127	2153 ± 753			
BRAC	2072±285	7192 ± 115	1422 ± 90	2239 ± 1124			
BRAC (max Q)	2369±234	7320±91	1916±343	2409 ± 1210			
BREMEN (Ours)	3328±275	8055±103	2058 ± 852	2346 ± 230			
ME-TRPO (offline)	1258±550	1804 ± 924	518±91	211±154			

Benchmarking Offline RL (D4RL)

Works comparably well with other model-free/model-based offline methods in more recent D4RL benchmarks [Fu+20]

Benchmarking Offline RL (D4RL)

Works comparably well with other model-free/model-based offline methods in more recent D4RL benchmarks [Fu+20]

n.b. Scores are normalized by the expert performance of each datasets

Task Name	BC	BREMEN	MOPO	CQL	BEAR	BRAC-v	AWR	BCQ
halfcheetah-random	2.1	36.9	31.9	35.4	25.1	31.2	2.5	2.2
walker2d-random	1.6	3.7	13.0	7.0	7.3	1.9	1.5	4.9
hopper-random	9.8	12.2	13.3	10.8	11.4	12.2	10.2	10.6
halfcheetah-medium	36.1	55.0	40.2	44.4	41.7	46.3	37.4	40.7
walker2d-medium	6.6	59.6	14.0	79.2	59.1	81.1	17.4	53.1
hopper-medium	29.0	69.3	26.5	58.0	52.1	31.1	35.9	54.5
halfcheetah-medium-replay	38.4	47.2	54.0	46.2	38.6	47.7	40.3	38.2
walker2d-medium-replay	11.3	7.6	42.7	26.7	19.2	0.9	15.5	15.0
hopper-medium-replay	11.8	24.1	92.5	48.6	33.7	0.6	28.4	33.1
halfcheetah-medium-expert	35.8	53.3	57.9	62.4	53.4	41.9	52.7	64.7
walker2d-medium-expert	6.4	55.2	55.0	98.7	40.1	81.6	53.8	57.5
hopper-medium-expert	111.9	64.6	51.7	111.0	96.3	0.8	27.1	110.9

Sample-Efficiency in Offline RL

Works well with 10-20x smaller datasets!

100,000 (100K) transitions						
Method	Ant	HalfCheetah	Hopper	Walker2d		
Dataset	1191	4066	1128	1376		
BC	1330±81	4266±21	1322±109	1426 ± 47		
BCQ	1363±199	3915±411	1129 ± 238	2187±196		
BRAC	-157±383	2505 ± 2501	1310 ± 70	2162 ± 1109		
BRAC (max Q)	-226±387	2332 ± 2422	1422 ± 101	2164 ± 1114		
BREMEN (Ours)	1633±127	$6095{\pm}370$	2191±455	2132 ± 301		
ME-TRPO (offline)	974±4	2±434	307±170	10±61		

50,000 (50K) transitions

Method	Ant	HalfCheetah	Hopper	Walker2d
Dataset	1191	4138	1128	1376
BC	1270±65	4230±49	1249±61	1420 ± 194
BCQ	1329±95	1319 ± 626	1178±235	1841±439
BRAC	-878±244	-597±73	1277±102	976±1207
BRAC (max Q)	-843±279	-590±56	1276±225	903±1137
BREMEN (Ours)	1347±283	5823 ± 146	1632±796	$2280{\pm}647$
ME-TRPO (offline)	938±32	-73±95	152±13	176±343

Sample-Efficiency in Offline RL

Works well with 10-20x smaller datasets!

Previous methods are sometimes unstable and don't exceed even datasets

100,000 (100K) transitions

Method	Ant	HalfCheetah	Hopper	Walker2d		
Dataset	1191	4066	1128	1376		
BC	1330±81	4266±21	1322±109	1426±47		
BCQ	1363±199	3915±411	1129±238	2187±196		
BRAC	-157±383	2505 ± 2501	1310 ± 70	2162±1109		
BRAC (max Q)	-226±387	2332±2422	1422 ± 101	2164±1114		
BREMEN (Ours)	1633±127	$6095{\pm}370$	2191±455	2132 ± 301		
ME-TRPO (offline)	974±4	2±434	307±170	10±61		
50,000 (50K) transitions						
	, ,	,				
Method	Ant	HalfCheetah	Hopper	Walker2d		
Method Dataset	· · · · ·			Walker2d 1376		
	Ant	HalfCheetah	Hopper			
Dataset	Ant 1191	HalfCheetah 4138	Hopper 1128	1376		
Dataset BC	Ant 1191 1270±65	HalfCheetah 4138 4230±49	Hopper 1128 1249±61	1376 1420±194		
Dataset BC BCQ	Ant 1191 1270±65 1329±95	HalfCheetah 4138 4230±49 1319±626	Hopper 1128 1249±61 1178±235	1376 1420±194 1841±439		
Dataset BC BCQ BRAC	Ant 1191 1270±65 1329±95 -878±244	HalfCheetah 4138 4230±49 1319±626 -597±73	Hopper 1128 1249±61 1178±235 1277±102	1376 1420±194 1841±439 976±1207		
Dataset BC BCQ BRAC BRAC (max Q)	Ant 1191 1270±65 1329±95 -878±244 -843±279	HalfCheetah 4138 4230±49 1319±626 -597±73 -590±56	Hopper 1128 1249±61 1178±235 1277±102 1276±225	1376 1420±194 1841±439 976±1207 903±1137		

Sample-Efficiency in Offline RL

Works well with 10-20x smaller datasets!

Previous methods are sometimes unstable and don't exceed even datasets

BREMEN is a stable & sample-efficient offline RL method!

100,000 (100K) transitions							
Method Ant HalfCheetah Hopper Walker2d							
Dataset	1191	4066	1128	1376			
BC	1330±81	4266±21	1322±109	1426 ± 47			
BCQ	1363±199	3915±411	1129±238	2187±196			
BRAC	-157±383	2505 ± 2501	1310±70	2162 ± 1109			
BRAC (max Q)	-226±387	2332±2422	1422 ± 101	2164 ± 1114			
BREMEN (Ours)	1633±127	$6095{\pm}370$	2191±455	2132 ± 301			
ME-TRPO (offline)	974±4	2±434	307±170	10±61			

50,000 (**50K**) transitions

Method	Ant	HalfCheetah	Hopper	Walker2d
Dataset	1191	4138	1128	1376
BC	1270±65	4230±49	1249 ± 61	1420 ± 194
BCQ	1329±95	1319 ± 626	1178±235	1841 ± 439
BRAC	-878±244	-597±73	1277±102	976 ± 1207
BRAC (max Q)	-843±279	-590±56	1276±225	903 ± 1137
BREMEN (Ours)	1347±283	5823±146	1632±796	2280 ± 647
ME-TRPO (offline)	938±32	-73±95	152±13	176±343

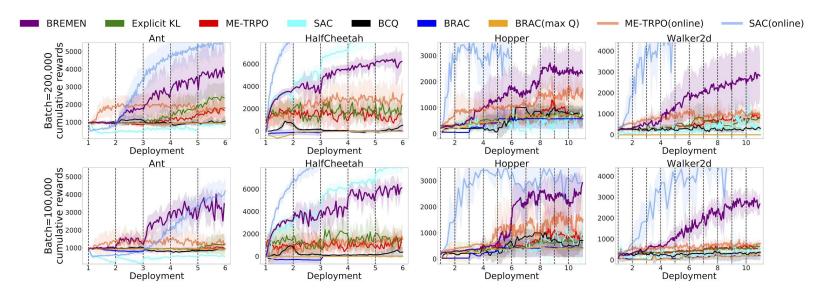
Recursively applying offline RL method

Online learning from random dataset with deployment limits

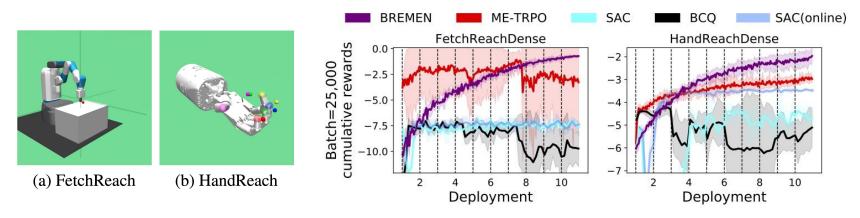
Recursively applying offline RL method

Online learning from random dataset with deployment limits

BREMEN (purple) achieves remarkable performance in limited-deployment settings

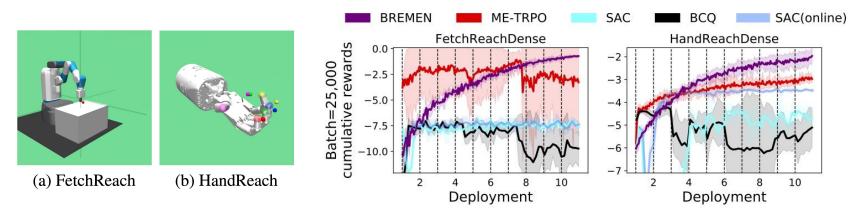


BREMEN stably improves the policy also in manipulation tasks



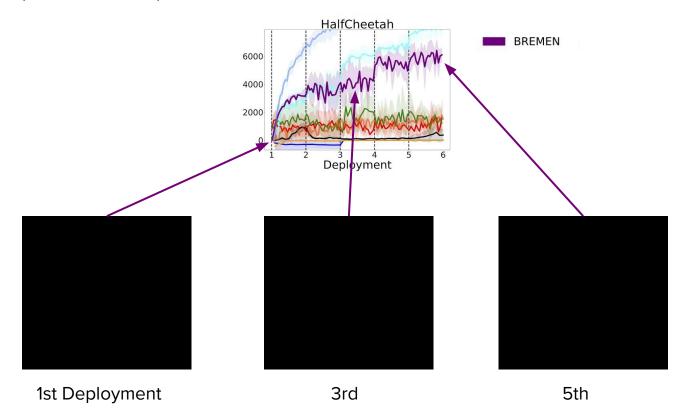
BREMEN stably improves the policy also in manipulation tasks

Satisfies practical requirements in robotics, sample- & deployment-efficiency



Qualitative Results

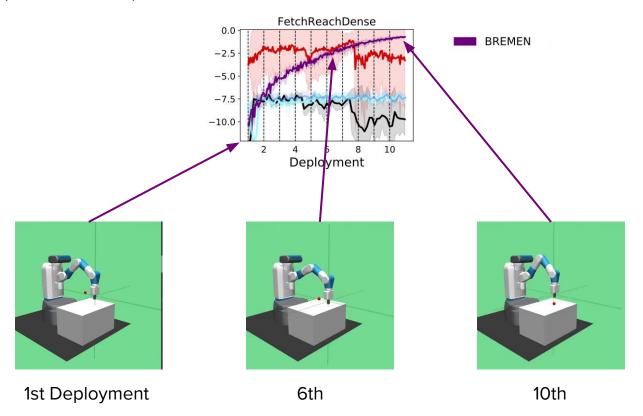
Locomotion (HalfCheetah)



31

Qualitative Results

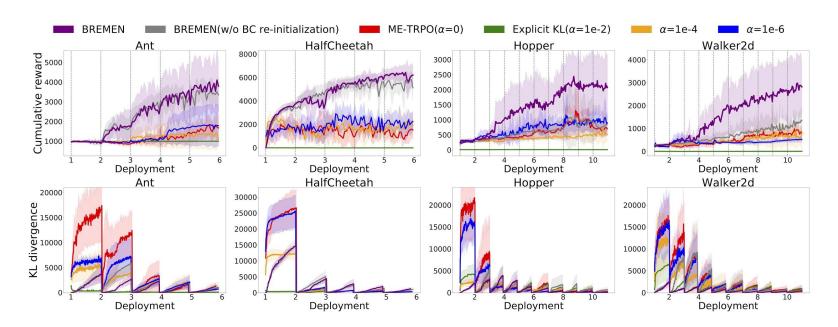
Manipulation (FetchReach)



Ablations: Effectiveness of Implicit KL Control

Explicit KL penalty w/o BC initialization moves farther away from last policy

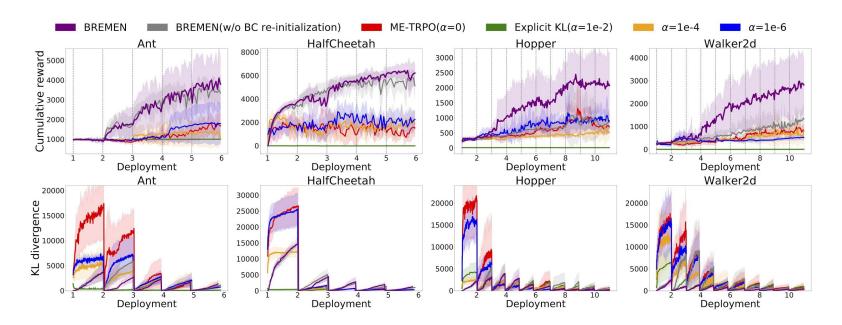
- α is coefficient for explicit KL penalty to the value
- Suggesting the implicit regularization is more effective as conservative update



Ablations: Effectiveness of Implicit KL Control

Explicit KL penalty w/o BC initialization moves farther away from last policy

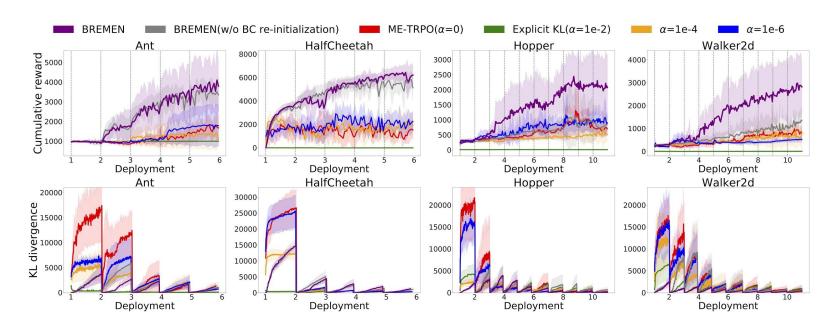
- α is coefficient for explicit KL penalty to the value
- Suggesting the implicit regularization is more effective as conservative update



Ablations: Effectiveness of Implicit KL Control

Explicit KL penalty w/o BC initialization moves farther away from last policy

- α is coefficient for explicit KL penalty to the value
- Suggesting the implicit regularization is more effective as conservative update



Summary

We propose BREMEN

- Model-based offline RL algorithm with high sample-efficiency
- Also achieves high deployment-efficiency

Future directions

- Policy verification for safe & efficient data-collection
- Applying to real robots

