Evaluations and Methods for Explanation through Robustness Analysis

Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh

Explanations for Machine Learning Models

Why Model Explanations?

- Machine learning models are deployed in many real-world applications, including high-stakes scenarios
- Besides task performance such as accuracy, it is important to understand how the models work in order to establish user trust

Explanations for Machine Learning Models

Why Model Explanations?

- Machine learning models are deployed in many real-world applications, including high-stakes scenarios
- Besides task performance such as accuracy, it is important to understand how the models work in order to establish user trust

Explanations for Machine Learning Models

Why Model Explanations?

- Machine learning models are deployed in many real-world applications, including high-stakes scenarios
- Besides task performance such as accuracy, it is important to understand how the models work in order to establish user trust

→ Explanations could help with understanding model trustability, fairness, weak points, etc.

Feature-based Explanations

Given an input example $x \in \mathbb{R}^d$, a model f, and its prediction f(x):

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \longrightarrow f(x)$$

Goal is to extract a compact set of relevant features with respect to the prediction:

$$\mathcal{X} \longrightarrow \begin{cases} \text{Relevant features: } S_r \subseteq U = \{1, \dots, d\} \\ \text{Irrelevant features: } \overline{S_r} = U \backslash S_r \end{cases}$$

Evaluating Feature Relevance

- Necessity: Removing relevant features from the input should lead to significant prediction change
 - If S_r is necessary for prediction: $f(x) f(x_{U \setminus S_r})$ should be large
- **Sufficiency**: Removing irrelevant features, keeping only relevant features, should not lead to large prediction change
 - If S_r is sufficient for prediction: $f(x) f(x_{S_r})$ should be small

Evaluating Feature Relevance

- Necessity: Removing relevant features from the input should lead to significant prediction change
 - If S_r is necessary for prediction: $f(x) f(x_{U \setminus S_r})$ should be large
- Sufficiency: Removing irrelevant features, keeping only relevant features, should not lead to large prediction change
 - If S_r is sufficient for prediction: $f(x) f(x_{S_r})$ should be small
- Challenge: Require ways to represent feature removal
 - x_S is represented by $[x_S; x_{\overline{S}}']$ where x' is some reference value
 - Such reference value could introduce bias into the evaluation

Risk of Operationalizing Feature Removal

The use of reference value introduces bias:

 Features close to the reference value x' are likely to be considered unimportant:

$$x_i = x_i' \qquad f(x_{U \setminus i}) = f([x_{U \setminus i}; x_i']) = f(x) \qquad \to \quad \text{Low Necessity}$$

$$f(x_i) = f([x_i; x_{U \setminus i}']) = f(x') \ll f(x) \qquad \to \quad \text{Low Sufficiency}$$

• Features far away from the reference value $\,x'\,$ are more likely to be considered important:

$$\text{Large } f(x) - f([x_{U \setminus i}; x_i']) \quad \longrightarrow \quad \text{High Necessity}$$

$$\text{Small } f(x) - f([x_i; x_{U \setminus i}']) \quad \longrightarrow \quad \text{High Sufficiency}$$

Risk of Operationalizing Feature Removal

Image classification with x' = 0:

- Black pixels will not be considered relevant
- However, they might be crucial in making the prediction
- E.g., turning the red circled area to white would possibly change the prediction from 1 to 7

Our Solution: Feature Robustness Analysis

Core Idea: from feature removal to feature value perturbation

- **Necessity:** Removing Perturbing the values of relevant features, fixing the irrelevant features, should lead to significant prediction change
- **Sufficiency:** Removing Perturbing the values of irrelevant features, fixing the relevant features, should not lead to large prediction change
- We propose to use minimum adversarial perturbation norm to quantify the influence of perturbations on the features

Robustness-based Twin Evaluation Criteria

Robustness on Feature Subset:

$$\epsilon_{x_{\overline{S}}} = g(f, x, S) = \{ \min_{\delta} \|\delta\|_{p} \ s.t. \ f(x + \delta) \neq f(x), \ \delta_{\overline{S}} = 0 \}$$

- Given an explanation that partitions the input features into relevant feature set S_r and irrelevant feature set $\overline{S_r}$:
 - Necessity implies smaller robustness value on ${\cal S}_r$

Robustness-
$$S_r := \epsilon_{\chi_{S_r}}$$
 (the smaller the better)

• Sufficiency implies larger robustness value on $\overline{S_r}$

Robustness-
$$\overline{S_r} := \epsilon_{\chi_{\overline{S_r}}}$$
 (the higher the better)

• Approximately compute $\epsilon_{\mathbf{x}_{\!\scriptscriptstyle S}}$ by adversarial attacks

Robustness-based Twin Evaluation Criteria

Evaluation for Feature Importance Explanations

- ullet Sort features by importance and provide top-K features as relevant set S_r
- Plot the evaluation curves of Robustness- S_r (- $\overline{S_r}$) by varying the size of S_r

Robustness-based Twin Evaluation Criteria

Evaluation for Feature Importance Explanations

- ullet Sort features by importance and provide top-K features as relevant set S_r
- Plot the evaluation curves of Robustness- S_r (- $\overline{S_r}$) by varying the size of S_r
- Smaller / Larger area under curve of Robustness- S_r / - $\overline{S_r}$ indicates better feature attribution ranking

Contrastive Explanation by Targeted Attack

Untargeted Adversarial Robustness:

$$\epsilon_{x_{S}} = g(f, x, S) = \{ \min_{\delta} \|\delta\|_{p} \ s.t. \ f(x + \delta) \neq f(x), \ \delta_{\overline{S}} = 0 \}$$

• Relevant features that lead to the current prediction f(x)

Targeted Adversarial Robustness:

$$\epsilon_{x_S,t} = g(f, x, S) = \{ \min_{\delta} \|\delta\|_p \ s.t. \ f(x+\delta) = t, \, \delta_{\overline{S}} = 0 \}$$

where *t* is the targeted class

- Relevant features that lead to its current prediction f(x) but not class t
- Answers the question "Why an example is classified as A but not B?"

New Explanation Optimizing the Evaluation

• Searching for an optimal set of relevant features S_r , under a cardinality constraint, leads to the following set of optimization problems:

Minimize Robustness- S_r

$$\arg\min_{S \subset U} g(f, x, S_r) \ s.t. \ |S_r| \le K$$

Maximize Robustness- $\overline{S_r}$

$$\arg \max_{S_r \subseteq U} g(f, x, \overline{S_r}) \ s.t. \ |S_r| \le K$$

• Directly solving these problems is challenging given that computing $g(\cdot)$ is itself NP-hard, which is further exacerbated by the discrete input constraint

New Explanation Optimizing the Evaluation

Naive Greedy Algorithm (Greedy):

- 1. Initialize $S_r^0 = \emptyset$
- 2. $S_r^{t+1} = S_r^t \cup i$ where i is selected by:

Robustness-
$$S_r$$
: arg $\min_i g(f, x, S_r^t \cup i)$ / Robustness- $\overline{S_r}$: arg $\max_i g(f, x, \overline{S_r^t \cup i})$

- 3. Repeat Step 2 until $|S_r| = K$
- Downside: Feature interactions are ignored
 - Features seem irrelevant when evaluated independently might nonetheless be relevant when evaluated simultaneously

New Explanation Optimizing the Evaluation

Greedy by Set Aggregation Score (Greedy-AS):

- **Key Idea:** Iteratively choose features based on their expected contribution to the objective $g(\,\cdot\,)$ when added to S_r , along with a random subset of other unchosen features
- Measure the aggregated contribution score via a linear regression:

$$w^{t} = \arg\min_{w} \min_{c} \sum_{S \in \mathscr{P}(\overline{S_{r}^{t}})} ((w^{T}b(S) + c) - v(S_{r}^{t} \cup S))^{2}$$

where $b: \mathcal{P}(\overline{S_r^t}) \to \{0,1\}^{|\overline{S_r^t}|}$ projects S into its binary vector form and $v(\cdot)$ is the objective function of interest

- $ightharpoonup^t$ corresponds to the unchosen features' expected contribution to the objective when included into S_r
- At each step t, choose features that are expected to contribute the most

Evaluation under Robustness- S_r / $\overline{S_r}$

Table 1: AUC of Robustness- $\overline{S_r}$ and Robustness- S_r for various explanations on different datasets. The higher the better for Robustness- $\overline{S_r}$; the lower the better for Robustness- S_r .

Datasets	Explanations	Grad	IG	EG	SHAP	LOO	BBMP	CFX	Random	Greedy-AS		Croody AS offoctively
MNIST	Robustness- $\overline{S_r}$ Robustness- S_r	88.00 91.72	85.98 91.97	93.24 91.05	75.48 101.49	74.14 104.38	78.58 176.61	69.88 102.81	64.44 193.75	98.01 82.81		Greedy-AS effectively
ImageNet	Robustness- $\overline{S_r}$ Robustness- S_r	27.13 45.53	26.01 46.28	26.88 48.82	18.25 60.02	22.29 58.46	21.56 158.01	27.12 46.10	17.98 56.11	31.62 43.97	→	optimizes the
Yahoo!Answer	Robustness- $\overline{S_r}$ Robustness- S_r	1.97 2.91	1.86 3.14	1.96 2.99	1.81 3.34	1.74 4.04	-	1.95 2.96	1.71 7.64	2.13 2.41		proposed criteria

Evaluation under Insertion/Deletion

Table 2: AUC of the Insertion and Deletion criteria for various explanations on different datasets. The higher the better for Insertion; the lower the better for Deletion.

Datasets	Explanations	Grad	IG	EG	SHAP	LOO	BBMP	CFX	Random	Greedy-AS
MNIST	Insertion Deletion	174.18 153.58	177.12 150.90	228.64 113.21	125.93 213.32	121.99 274.77	108.97 587.08	102.05 137.69	51.71 312.07	270.75 94.24
ImageNet	Insertion Deletion	86.16 276.78	109.94 256.51	150.81 244.88	28.06 143.27	63.90 290.10	135.98 615.13	97.33 281.12	31.73 314.82	183.66 219.52
Yahoo!Answers	Insertion Deletion	0.06 2.57	0.06 2.96	0.20 2.07	0.07 2.23	0.18 2.07	-	0.05 2.35	0.10 2.63	0.21 1.56

Greedy-AS also performs favorably on a set of existing popular criteria

Explanations on MNIST

Greedy-AS highlights both important white and black pixels, while existing explanations tend to focus more on the white pixels

Explanations on ImageNet

Greedy-AS focuses more compactly on the actual objects being classified

Explanations on Yahoo!Answers

Input	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
Grad	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
IG	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
EG	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
SHAP	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
LOO	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
CFX	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
Greedy-AS	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
Anchor	Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them?
	Most Relevant Less Relevant

Top-5 keywords selected by Greedy-AS are all related to the label "Sports"

Targeted Explanations on MNIST

→ Highlighted features change meaningfully when the targeted class changes

Conclusion

- We define new evaluation criteria for feature based explanations by leveraging robustness analysis
 - This reduces the bias inherent in other recent evaluation measures that focus on "removing features"
- We design efficient algorithms to generate explanations that optimize the proposed criteria
 - We demonstrate the effectiveness and interpretability of our proposed explanation on image and language datasets

Thank You!

Evaluations and Methods for Explanation through Robustness Analysis

Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh