Evaluations and Methods for Explanation through Robustness Analysis Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh ### **Explanations for Machine Learning Models** #### Why Model Explanations? - Machine learning models are deployed in many real-world applications, including high-stakes scenarios - Besides task performance such as accuracy, it is important to understand how the models work in order to establish user trust ### **Explanations for Machine Learning Models** #### Why Model Explanations? - Machine learning models are deployed in many real-world applications, including high-stakes scenarios - Besides task performance such as accuracy, it is important to understand how the models work in order to establish user trust # **Explanations for Machine Learning Models** #### Why Model Explanations? - Machine learning models are deployed in many real-world applications, including high-stakes scenarios - Besides task performance such as accuracy, it is important to understand how the models work in order to establish user trust **→** Explanations could help with understanding model trustability, fairness, weak points, etc. ### **Feature-based Explanations** **Given** an input example $x \in \mathbb{R}^d$, a model f, and its prediction f(x): $$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \longrightarrow f(x)$$ **Goal** is to extract a compact set of relevant features with respect to the prediction: $$\mathcal{X} \longrightarrow \begin{cases} \text{Relevant features: } S_r \subseteq U = \{1, \dots, d\} \\ \text{Irrelevant features: } \overline{S_r} = U \backslash S_r \end{cases}$$ ### **Evaluating Feature Relevance** - Necessity: Removing relevant features from the input should lead to significant prediction change - If S_r is necessary for prediction: $f(x) f(x_{U \setminus S_r})$ should be large - **Sufficiency**: Removing irrelevant features, keeping only relevant features, should not lead to large prediction change - If S_r is sufficient for prediction: $f(x) f(x_{S_r})$ should be small ### **Evaluating Feature Relevance** - Necessity: Removing relevant features from the input should lead to significant prediction change - If S_r is necessary for prediction: $f(x) f(x_{U \setminus S_r})$ should be large - Sufficiency: Removing irrelevant features, keeping only relevant features, should not lead to large prediction change - If S_r is sufficient for prediction: $f(x) f(x_{S_r})$ should be small - Challenge: Require ways to represent feature removal - x_S is represented by $[x_S; x_{\overline{S}}']$ where x' is some reference value - Such reference value could introduce bias into the evaluation ### Risk of Operationalizing Feature Removal The use of reference value introduces bias: Features close to the reference value x' are likely to be considered unimportant: $$x_i = x_i' \qquad f(x_{U \setminus i}) = f([x_{U \setminus i}; x_i']) = f(x) \qquad \to \quad \text{Low Necessity}$$ $$f(x_i) = f([x_i; x_{U \setminus i}']) = f(x') \ll f(x) \qquad \to \quad \text{Low Sufficiency}$$ • Features far away from the reference value $\,x'\,$ are more likely to be considered important: $$\text{Large } f(x) - f([x_{U \setminus i}; x_i']) \quad \longrightarrow \quad \text{High Necessity}$$ $$\text{Small } f(x) - f([x_i; x_{U \setminus i}']) \quad \longrightarrow \quad \text{High Sufficiency}$$ ### Risk of Operationalizing Feature Removal Image classification with x' = 0: - Black pixels will not be considered relevant - However, they might be crucial in making the prediction - E.g., turning the red circled area to white would possibly change the prediction from 1 to 7 ### **Our Solution: Feature Robustness Analysis** Core Idea: from feature removal to feature value perturbation - **Necessity:** Removing Perturbing the values of relevant features, fixing the irrelevant features, should lead to significant prediction change - **Sufficiency:** Removing Perturbing the values of irrelevant features, fixing the relevant features, should not lead to large prediction change - We propose to use minimum adversarial perturbation norm to quantify the influence of perturbations on the features ### **Robustness-based Twin Evaluation Criteria** #### **Robustness on Feature Subset:** $$\epsilon_{x_{\overline{S}}} = g(f, x, S) = \{ \min_{\delta} \|\delta\|_{p} \ s.t. \ f(x + \delta) \neq f(x), \ \delta_{\overline{S}} = 0 \}$$ - Given an explanation that partitions the input features into relevant feature set S_r and irrelevant feature set $\overline{S_r}$: - Necessity implies smaller robustness value on ${\cal S}_r$ **Robustness-** $$S_r := \epsilon_{\chi_{S_r}}$$ (the smaller the better) • Sufficiency implies larger robustness value on $\overline{S_r}$ **Robustness-** $$\overline{S_r} := \epsilon_{\chi_{\overline{S_r}}}$$ (the higher the better) • Approximately compute $\epsilon_{\mathbf{x}_{\!\scriptscriptstyle S}}$ by adversarial attacks ### **Robustness-based Twin Evaluation Criteria** #### **Evaluation for Feature Importance Explanations** - ullet Sort features by importance and provide top-K features as relevant set S_r - Plot the evaluation curves of Robustness- S_r (- $\overline{S_r}$) by varying the size of S_r ### **Robustness-based Twin Evaluation Criteria** #### **Evaluation for Feature Importance Explanations** - ullet Sort features by importance and provide top-K features as relevant set S_r - Plot the evaluation curves of Robustness- S_r (- $\overline{S_r}$) by varying the size of S_r - Smaller / Larger area under curve of Robustness- S_r / - $\overline{S_r}$ indicates better feature attribution ranking ### Contrastive Explanation by Targeted Attack #### **Untargeted Adversarial Robustness:** $$\epsilon_{x_{S}} = g(f, x, S) = \{ \min_{\delta} \|\delta\|_{p} \ s.t. \ f(x + \delta) \neq f(x), \ \delta_{\overline{S}} = 0 \}$$ • Relevant features that lead to the current prediction f(x) #### **Targeted Adversarial Robustness:** $$\epsilon_{x_S,t} = g(f, x, S) = \{ \min_{\delta} \|\delta\|_p \ s.t. \ f(x+\delta) = t, \, \delta_{\overline{S}} = 0 \}$$ where *t* is the targeted class - Relevant features that lead to its current prediction f(x) but not class t - Answers the question "Why an example is classified as A but not B?" ### **New Explanation Optimizing the Evaluation** • Searching for an optimal set of relevant features S_r , under a cardinality constraint, leads to the following set of optimization problems: **Minimize** Robustness- S_r $$\arg\min_{S \subset U} g(f, x, S_r) \ s.t. \ |S_r| \le K$$ **Maximize** Robustness- $\overline{S_r}$ $$\arg \max_{S_r \subseteq U} g(f, x, \overline{S_r}) \ s.t. \ |S_r| \le K$$ • Directly solving these problems is challenging given that computing $g(\cdot)$ is itself NP-hard, which is further exacerbated by the discrete input constraint ### **New Explanation Optimizing the Evaluation** #### **Naive Greedy Algorithm (Greedy):** - 1. Initialize $S_r^0 = \emptyset$ - 2. $S_r^{t+1} = S_r^t \cup i$ where i is selected by: Robustness- $$S_r$$: arg $\min_i g(f, x, S_r^t \cup i)$ / Robustness- $\overline{S_r}$: arg $\max_i g(f, x, \overline{S_r^t \cup i})$ - 3. Repeat Step 2 until $|S_r| = K$ - Downside: Feature interactions are ignored - Features seem irrelevant when evaluated independently might nonetheless be relevant when evaluated simultaneously ### **New Explanation Optimizing the Evaluation** #### **Greedy by Set Aggregation Score (Greedy-AS):** - **Key Idea:** Iteratively choose features based on their expected contribution to the objective $g(\,\cdot\,)$ when added to S_r , along with a random subset of other unchosen features - Measure the aggregated contribution score via a linear regression: $$w^{t} = \arg\min_{w} \min_{c} \sum_{S \in \mathscr{P}(\overline{S_{r}^{t}})} ((w^{T}b(S) + c) - v(S_{r}^{t} \cup S))^{2}$$ where $b: \mathcal{P}(\overline{S_r^t}) \to \{0,1\}^{|\overline{S_r^t}|}$ projects S into its binary vector form and $v(\cdot)$ is the objective function of interest - $ightharpoonup^t$ corresponds to the unchosen features' expected contribution to the objective when included into S_r - At each step t, choose features that are expected to contribute the most ### Evaluation under Robustness- S_r / $\overline{S_r}$ Table 1: AUC of Robustness- $\overline{S_r}$ and Robustness- S_r for various explanations on different datasets. The higher the better for Robustness- $\overline{S_r}$; the lower the better for Robustness- S_r . | Datasets | Explanations | Grad | IG | EG | SHAP | LOO | BBMP | CFX | Random | Greedy-AS | | Croody AS offoctively | |--------------|---|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------|-----------------------| | MNIST | Robustness- $\overline{S_r}$
Robustness- S_r | 88.00
91.72 | 85.98
91.97 | 93.24
91.05 | 75.48
101.49 | 74.14
104.38 | 78.58
176.61 | 69.88
102.81 | 64.44
193.75 | 98.01
82.81 | | Greedy-AS effectively | | ImageNet | Robustness- $\overline{S_r}$
Robustness- S_r | 27.13
45.53 | 26.01
46.28 | 26.88
48.82 | 18.25
60.02 | 22.29
58.46 | 21.56
158.01 | 27.12
46.10 | 17.98
56.11 | 31.62
43.97 | → | optimizes the | | Yahoo!Answer | Robustness- $\overline{S_r}$
Robustness- S_r | 1.97
2.91 | 1.86
3.14 | 1.96
2.99 | 1.81
3.34 | 1.74
4.04 | - | 1.95
2.96 | 1.71
7.64 | 2.13
2.41 | | proposed criteria | #### **Evaluation under Insertion/Deletion** Table 2: AUC of the Insertion and Deletion criteria for various explanations on different datasets. The higher the better for Insertion; the lower the better for Deletion. | Datasets | Explanations | Grad | IG | EG | SHAP | LOO | BBMP | CFX | Random | Greedy-AS | |---------------|-----------------------|------------------|------------------|------------------|------------------------|------------------|------------------|------------------|-----------------|----------------------| | MNIST | Insertion
Deletion | 174.18
153.58 | 177.12
150.90 | 228.64
113.21 | 125.93
213.32 | 121.99
274.77 | 108.97
587.08 | 102.05
137.69 | 51.71
312.07 | 270.75
94.24 | | ImageNet | Insertion
Deletion | 86.16
276.78 | 109.94
256.51 | 150.81
244.88 | 28.06
143.27 | 63.90
290.10 | 135.98
615.13 | 97.33
281.12 | 31.73
314.82 | 183.66 219.52 | | Yahoo!Answers | Insertion
Deletion | 0.06
2.57 | 0.06
2.96 | 0.20
2.07 | 0.07
2.23 | 0.18
2.07 | - | 0.05
2.35 | 0.10
2.63 | 0.21
1.56 | Greedy-AS also performs favorably on a set of existing popular criteria #### **Explanations on MNIST** Greedy-AS highlights both important white and black pixels, while existing explanations tend to focus more on the white pixels #### **Explanations on ImageNet** Greedy-AS focuses more compactly on the actual objects being classified #### **Explanations on Yahoo!Answers** | Input | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | |-----------|---| | Grad | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | | IG | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | | EG | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | | SHAP | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | | LOO | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | | CFX | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | | Greedy-AS | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | | Anchor | Ronaldinho and kaka are my favorite players out there. why did they replace them? I completely missed that part. Do they say why the switched them? | | | Most Relevant Less Relevant | Top-5 keywords selected by Greedy-AS are all related to the label "Sports" #### **Targeted Explanations on MNIST** → Highlighted features change meaningfully when the targeted class changes ### Conclusion - We define new evaluation criteria for feature based explanations by leveraging robustness analysis - This reduces the bias inherent in other recent evaluation measures that focus on "removing features" - We design efficient algorithms to generate explanations that optimize the proposed criteria - We demonstrate the effectiveness and interpretability of our proposed explanation on image and language datasets # Thank You! **Evaluations and Methods for Explanation through Robustness Analysis** Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh