Capturing Label Characteristics in VAEs

ICLR 2021

Tom Joy¹, Sebastian M. Schmon^{1,2}, Philip H. S. Torr¹, N. Siddharth*^{1,3} and Tom Rainforth*¹ March 25, 2021

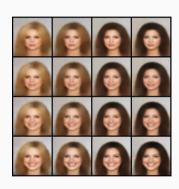
 $^{^{1}}$ University of Oxford

²Improbable

³University of Edinburgh & The Alan Turing Institute

Representation Learning through VAEs

- VAEs learn representations of data.
- We want to capture characteristics in individual dimensions.
- Can alter characteristics without affecting others.
- Our model achieves this by leveraging label information.



Introducing label information

- Sometimes we have labels.
- A label contains the minimum amount of information about the characteristic.

Not Smiling

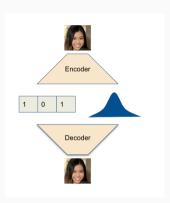
Smiling

Baseline

- Prior approaches treat the labels directly as latent values¹.
- Latents are partially-observed.

This is a bad idea

Placing the labels into the latent space destroys the representation.



¹Diederik P. Kingma et al. "Semi-supervised learning with deep generative models". In: *NIPS* (2014).

How should we use labels?

- We want to capture more information than just the label itself.
- Traversing the latents should alter the characteristics.
- Latent space smooth needs to be smooth.

Less Smiling

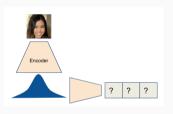
More Smiling

CCVAE - Inference model

- Our model has an entirely smooth latent space.
- The labels are treated as auxiliary variables.
- Classification is performed on the latent space.

This is a good idea

The latent space now captures the information in the image.

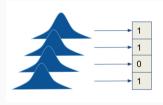


CCVAE - Inference model

- We classify a single label on a single latent.
- The latent space now has a latent for each label.

This is a good idea

This is essential for disentanglement.

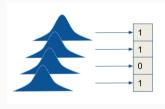


CCVAE - Disentangling the latent space

- Information about the characteristic needs to be present to classify it correctly.
- This forces the encoder to place the information in the correct latent.

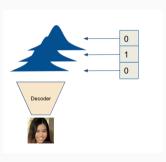
Disentanglement!

We can now capture more information than the labels and also disentangle them!



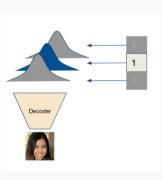
CCVAE - Generative model

- Each characteristic will have diversity.
- We want this diversity in conditional generations.
- We learn a distribution $p(z_i|y_i)$ for each latent.



CCVAE - Generative model

- We can now sample individual representations for individual characteristics.
- We can re-sample from one representation to gain diversity of that characteristic.



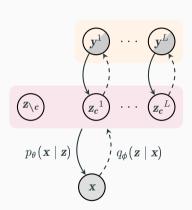
CCVAE - Generative model

Diverse Generations

We can now generate diverse samples for each label, e.g. preserve everything but generate different glasses.

CCVAE - Graphical model

- We use the previous features in our graphical model.
- This enables us to capture more information than just the label.
- We also disentangle the latent space, allowing for traversals.



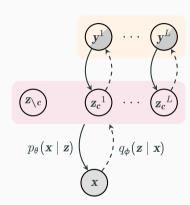
CCVAE - Supervised Objective

- Our objective represents the ELBO of the model.
- which contains a conditional prior $p_{\psi}(\mathbf{z} \mid \mathbf{y})$ and a classifier $q_{\varphi,\phi}(\mathbf{y} \mid \mathbf{x})$.

$$\mathcal{L}_{CCVAE}(\mathbf{x}, \mathbf{y}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\frac{q_{\varphi}(\mathbf{y} \mid \mathbf{z})}{q_{\varphi, \phi}(\mathbf{y} \mid \mathbf{x})} \log \frac{p_{\theta}(\mathbf{x} \mid \mathbf{z}) p_{\psi}(\mathbf{z} \mid \mathbf{y})}{q_{\varphi}(\mathbf{y} \mid \mathbf{z}) q_{\phi}(\mathbf{z} \mid \mathbf{x})} \right] + \log q_{\varphi, \phi}(\mathbf{y} \mid \mathbf{x}) + \log p(\mathbf{y}).$$
(1)

CCVAE - Semi-supervised Objective

- Our model can deal with the case without labels.
- Perform variational inference over the labels.
- Good performance is achieved at a supervision rate of 1/250.



CCVAE - Results

- Our model captures and disentangles characteristics.
- Permitting latent traversals and diverse conditional generations.
- Improves classification accuracy.

	CelebA			
Model	f = 0.004	f = 0.06	f = 0.2	f = 1.0
CCVAE	0.832	0.862	0.878	0.900
M2	0.794	0.862	0.877	0.893
DIVA	0.807	0.860	0.867	0.877
MVAE	0.793	0.828	0.847	0.864

Figure 1: Classification accuracies



Figure 2: Latent Traversals

Figure 3: Variance of generations

Thank You

github.com/thwjoy/ccvae

Paper

Code