

DrNAS: Dirichlet Neural Architecture Search

Xiangning Chen*, Ruochen Wang*, Minhao Cheng*, Xiaocheng Tang, Cho-Jui Hsieh University of California, Los Angeles, DiDI Al Lab

DrNAS - Effective, Robust, Efficient NAS framework

- Effective:
 - Constraint architecture distribution learning
 - Strike a balance between exploration and exploitation

- Robust:
 - SOTA results across various spaces and datasets
 - Theoretical benefit to improve generalization

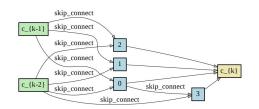
- > Efficient:
 - Low GPU memory overhead & direct search on large-scale tasks
 - Gradient-based optimization

Directly learn an architecture weight doesn't work

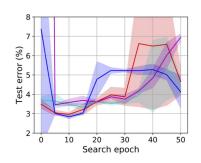
- Distorted structures
 - All operations are skip-connection

- Sharp landscape
 - Overfit the validation set
 - Blowing Hessian norm

- Significant performance degradation
 - Insufficient exploration





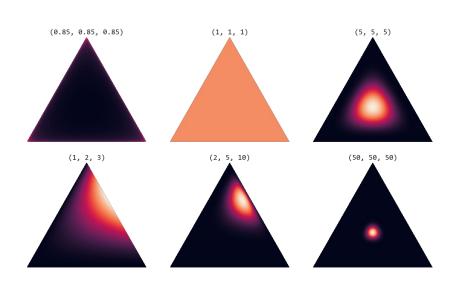


Learn an architecture distribution instead

Distribution learning naturally encourages exploration compared with point estimation

$$\min_{\beta} E_{q(\theta|\beta)} \left[\mathcal{L}_{val}(w^*, \theta) \right] + \lambda d(\beta, \hat{\beta}) \text{ s.t. } w^* = \underset{w}{\operatorname{arg \, min}} \mathcal{L}_{train}(w, \theta).$$
$$q(\theta|\beta) \sim Dir(\beta)$$

- Additional distance constraint
 - \circ $\beta \ll 1$ leads to **sparse** samples with high variance (instability)
 - \circ $\beta\gg 1$ leads to **dense** samples with low variance (insufficient exploration)
 - \circ Add a penalty term with the anchor $\hat{eta} = 1$



Efficient gradient-based optimization

- > Pathwise derivative estimator
 - Approximate the gradient of Dirichlet samples

$$\frac{d\theta_i}{d\beta_j} = -\frac{\frac{\partial F_{Beta}}{\partial \beta_j}(\theta_j | \beta_j, \beta_{tot} - \beta_j)}{f_{Beta}(\theta_j | \beta_j, \beta_{tot} - \beta_j)} \times \left(\frac{\delta_{ij} - \theta_i}{1 - \theta_j}\right) \quad i, j = 1, ..., |\mathcal{O}|,$$

- Alternative updates between network weight and architecture distribution
- Determine the operation by the most likely one in expectation (Dirichlet mean)

$$o^{(i,j)} = \operatorname*{arg\,max}_{o \in \mathcal{O}} E_{q(\theta_o^{(i,j)}|\beta^{(i,j)})} \big[\theta_o^{(i,j)}\big].$$

> The learnt distribution can be beneficial in a post search phase (resource restrictions)

Theoretical benefit of improved generalization

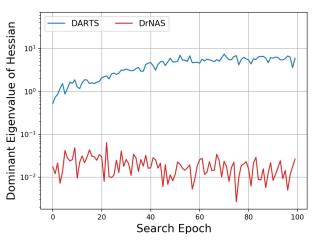
We prove that minimizing the expected validation loss controls the trace norm of the Hessian matrix

Proposition 1 Let $d(\beta, \hat{\beta}) = \|\beta - \hat{\beta}\|_2 \le \delta$ and $\hat{\beta} = 1$ in the bi-level formulation. Let μ denote the mean under the Laplacian approximation of Dirichlet. The upper-level objective can be approximated bounded by:

$$E_{q(\theta|\beta)}(\mathcal{L}_{val}(w,\theta)) \gtrsim \tilde{\mathcal{L}}_{val}(w^*,\mu) + C \cdot tr(\nabla_{\mu}^2 \tilde{\mathcal{L}}_{val}(w^*,\mu))$$

with:

$$\tilde{\mathcal{L}}_{val}(w^*, \mu) = \mathcal{L}_{val}(w^*, Softmax(\mu)),$$



Progressive learning scheme

➤ A direct search on large-scale tasks, no gap between search and evaluation

Progressively increase the fraction of channels that are forwarded to the mixed-operation and meanwhile prunes the operation space

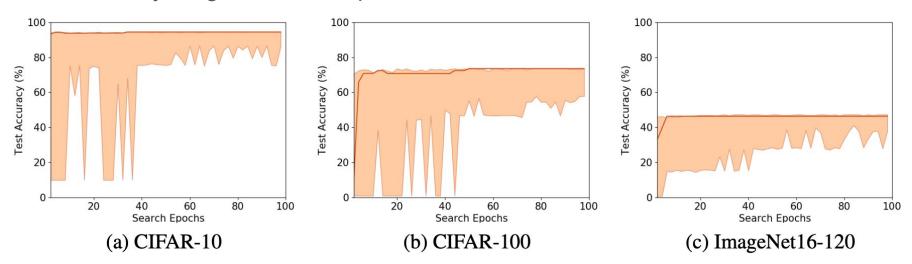
Strong Empirical Results

- On NAS-Bench-201, we achieve the best accuracy on all 3 datasets
- Oracle on CIFAR-100 with 0 variance

Method	CIFAR-10		CIFAR-100		ImageNet-16-120	
	validation	test	validation	test	validation	test
ResNet (He et al., 2016)	90.83	93.97	70.42	70.86	44.53	43.63
Random (baseline)	90.93 ± 0.36	93.70 ± 0.36	70.60 ± 1.37	70.65 ± 1.38	42.92 ± 2.00	42.96 ± 2.15
RSPS (Li & Talwalkar, 2019)	84.16 ± 1.69	87.66 ± 1.69	45.78 ± 6.33	46.60 ± 6.57	31.09 ± 5.65	30.78 ± 6.12
Reinforce (Zoph et al., 2018)	91.09 ± 0.37	93.85 ± 0.37	70.05 ± 1.67	70.17 ± 1.61	43.04 ± 2.18	43.16 ± 2.28
ENAS (Pham et al., 2018)	39.77 ± 0.00	54.30 ± 0.00	10.23 ± 0.12	10.62 ± 0.27	16.43 ± 0.00	16.32 ± 0.00
DARTS (1st) (Liu et al., 2019)	39.77 ± 0.00	54.30 ± 0.00	38.57 ± 0.00	38.97 ± 0.00	18.87 ± 0.00	18.41 ± 0.00
DARTS (2nd) (Liu et al., 2019)	39.77 ± 0.00	54.30 ± 0.00	38.57 ± 0.00	38.97 ± 0.00	18.87 ± 0.00	18.41 ± 0.00
GDAS (Dong & Yang, 2019)	90.01 ± 0.46	93.23 ± 0.23	24.05 ± 8.12	24.20 ± 8.08	40.66 ± 0.00	41.02 ± 0.00
SNAS (Xie et al., 2019)	90.10 ± 1.04	92.77 ± 0.83	69.69 ± 2.39	69.34 ± 1.98	42.84 ± 1.79	43.16 ± 2.64
DSNAS (Hu et al., 2020)	89.66 ± 0.29	93.08 ± 0.13	30.87 ± 16.40	31.01 ± 16.38	40.61 ± 0.09	41.07 ± 0.09
PC-DARTS (Xu et al., 2020)	89.96 ± 0.15	93.41 ± 0.30	67.12 ± 0.39	67.48 ± 0.89	40.83 ± 0.08	41.31 ± 0.22
DrNAS	91.55 ± 0.00	94.36 ± 0.00	73.49 ± 0.00	$\textbf{73.51} \pm \textbf{0.00}$	46.37 ± 0.00	46.34 ± 0.00
optimal	91.61	94.37	73.49	73.51	46.77	47.31

Exploration vs. Exploitation

Accuracy range of 100 sampled architectures vs. Dirichlet mean



DrNAS learns to encourage exploration at the early stages and then gradually reduces it towards the end

On CIFAR-10 and ImageNet

Architecture	Test Error	Params	Search Cost	Search
Arcintecture	(%)	(\mathbf{M})	(GPU days)	Method
DenseNet-BC (Huang et al., 2017)*	3.46	25.6	-	manual
NASNet-A (Zoph et al., 2018)	2.65	3.3	2000	RL
AmoebaNet-A (Real et al., 2019)	3.34 ± 0.06	3.2	3150	evolution
AmoebaNet-B (Real et al., 2019)	2.55 ± 0.05	2.8	3150	evolution
PNAS (Liu et al., 2018)*	3.41 ± 0.09	3.2	225	SMBO
ENAS (Pham et al., 2018)	2.89	4.6	0.5	RL
DARTS (1st) (Liu et al., 2019)	3.00 ± 0.14	3.3	0.4	gradient
DARTS (2nd) (Liu et al., 2019)	2.76 ± 0.09	3.3	1.0	gradient
SNAS (moderate) (Xie et al., 2019)	2.85 ± 0.02	2.8	1.5	gradient
GDAS (Dong & Yang, 2019)	2.93	3.4	0.3	gradient
BayesNAS (Zhou et al., 2019)	2.81 ± 0.04	3.4	0.2	gradient
ProxylessNAS (Cai et al., 2019) [†]	2.08	5.7	4.0	gradient
PARSEC (Casale et al., 2019)	2.81 ± 0.03	3.7	1	gradient
P-DARTS (Chen et al., 2019)	2.50	3.4	0.3	gradient
PC-DARTS (Xu et al., 2020)	2.57 ± 0.07	3.6	0.1	gradient
SDARTS-ADV (Chen & Hsieh, 2020)	2.61 ± 0.02	3.3	1.3	gradient
GAEA + PC-DARTS (Li et al., 2020)	2.50 ± 0.06	3.7	0.1	gradient
DrNAS (without progressive learning)	2.54 ± 0.03	4.0	0.4^{\ddagger}	gradient
DrNAS	2.46 ± 0.03	4.1	0.6^{\ddagger}	gradient

Aughitaatuus	Test Error(%)		Params	Search Cost	Search
Architecture		top-5	(M)	(GPU days)	Method
Inception-v1 (Szegedy et al., 2015)	top-1 30.1	10.1	6.6	-	manual
MobileNet (Howard et al., 2017)	29.4	10.5	4.2	-	manual
ShuffleNet $2 \times (v1)$ (Zhang et al., 2018)	26.4	10.2	~ 5	-	manual
ShuffleNet $2 \times (v2)$ (Ma et al., 2018)	25.1	-	~ 5	-	manual
NASNet-A (Zoph et al., 2018)	26.0	8.4	5.3	2000	RL
AmoebaNet-C (Real et al., 2019)		7.6	6.4	3150	evolution
PNAS (Liu et al., 2018)		8.1	5.1	225	SMBO
MnasNet-92 (Tan et al., 2019)	25.2	8.0	4.4	-	RL
DARTS (2nd) (Liu et al., 2019)	26.7	8.7	4.7	1.0	gradient
SNAS (mild) (Xie et al., 2019)	27.3	9.2	4.3	1.5	gradient
GDAS (Dong & Yang, 2019)	26.0	8.5	5.3	0.3	gradient
BayesNAS (Zhou et al., 2019)	26.5	8.9	3.9	0.2	gradient
DSNAS (Hu et al., 2020) [†]	25.7	8.1	-	-	gradient
ProxylessNAS (GPU) (Cai et al., 2019) [†]	24.9	7.5	7.1	8.3	gradient
PARSEC (Casale et al., 2019)	26.0	8.4	5.6	1	gradient
P-DARTS (CIFAR-10) (Chen et al., 2019)	24.4	7.4	4.9	0.3	gradient
P-DARTS (CIFAR-100) (Chen et al., 2019)	24.7	7.5	5.1	0.3	gradient
PC-DARTS (CIFAR-10) (Xu et al., 2020)	25.1	7.8	5.3	0.1	gradient
PC-DARTS (ImageNet) (Xu et al., 2020) [†]	24.2	7.3	5.3	3.8	gradient
GAEA + PC-DARTS (Li et al., 2020) [†]	24.0	7.3	5.6	3.8	gradient
DrNAS (without progressive learning) [†]	24.2	7.3	5.2	3.9	gradient
DrNAS [†]	23.7	7.1	5.7	4.6	gradient

[†] The architecture is searched on ImageNet, otherwise it is searched on CIFAR-10 or CIFAR-100.

DrNAS

Effective, Robust, Efficient NAS framework

Code: https://github.com/xiangning-chen/DrNAS