

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets

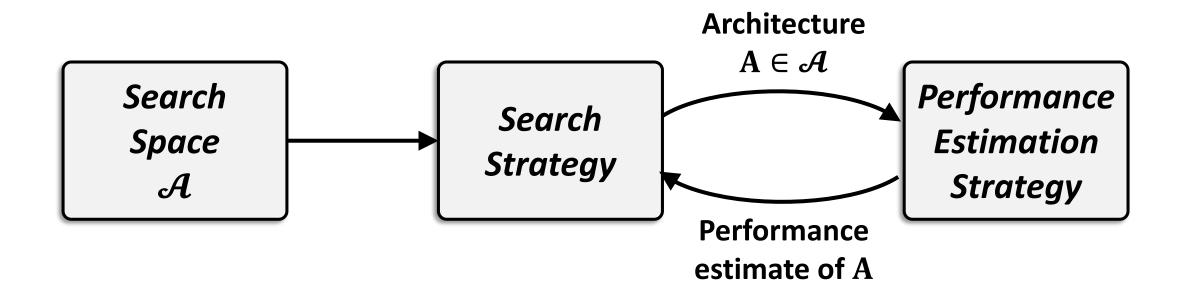
ICLR 2021

Hayeon Lee^{1*}, Eunyoung Hyung^{1*}, Sung Ju Hwang¹ ²

KAIST¹, AITRICS²

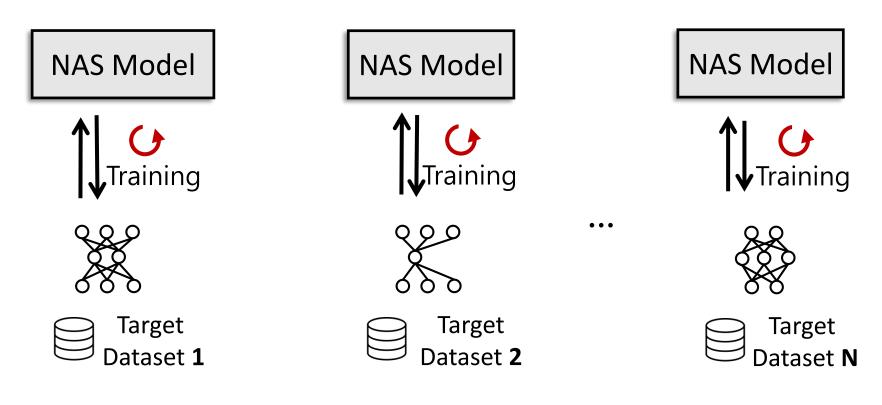
Neural Architecture Search (NAS)

Neural Architecture Search (NAS) is an **automated** architecture search process that aims to overcome the suboptimality of manual architecture designs.



Conventional Task-specific NAS Approach

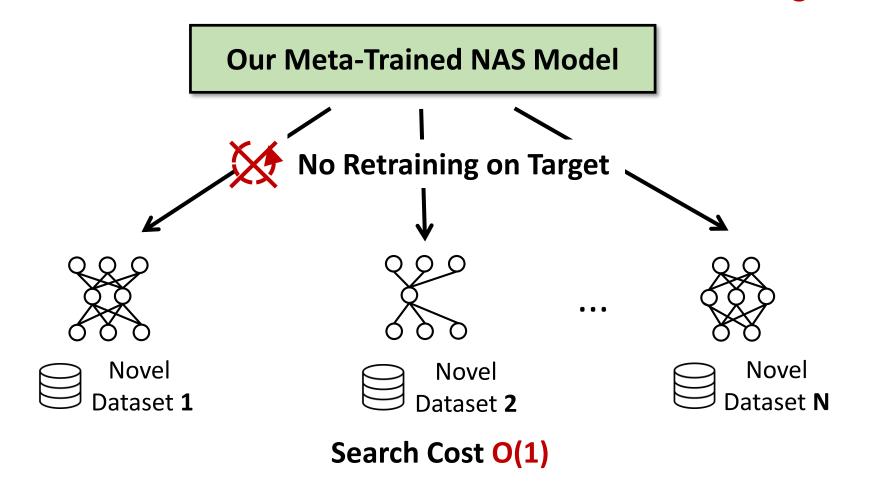
The conventional task-specific NAS approaches search from scratch for every given single dataset require a huge computational cost.



Search Cost O(N)

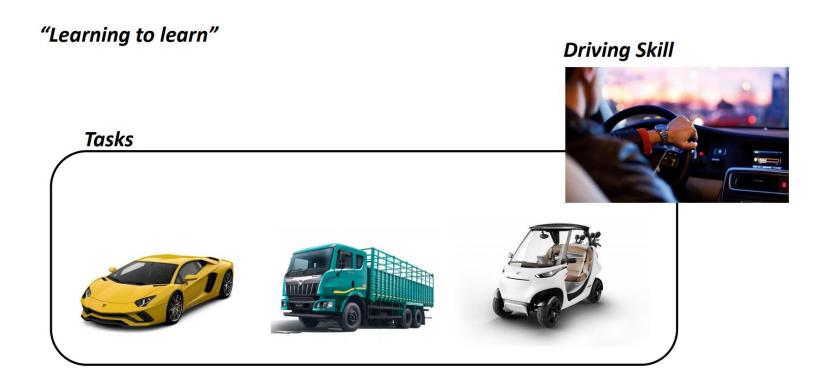
MetaD2A: Rapid Neural Architecture Search

We propose MetaD2A that is meta-trained once on a database and can **rapidly** search for a neural architecture on a **novel** dataset **without additional training**.



Meta-learning

Meta-learning learns a model to generalizes over multiple tasks.



We adopt amortized meta-learning which utilizes a set encoder to perform learning at the task-level, considering each task as a data instance and minimizing loss over it.

Amortized Meta-learning Framework for NAS

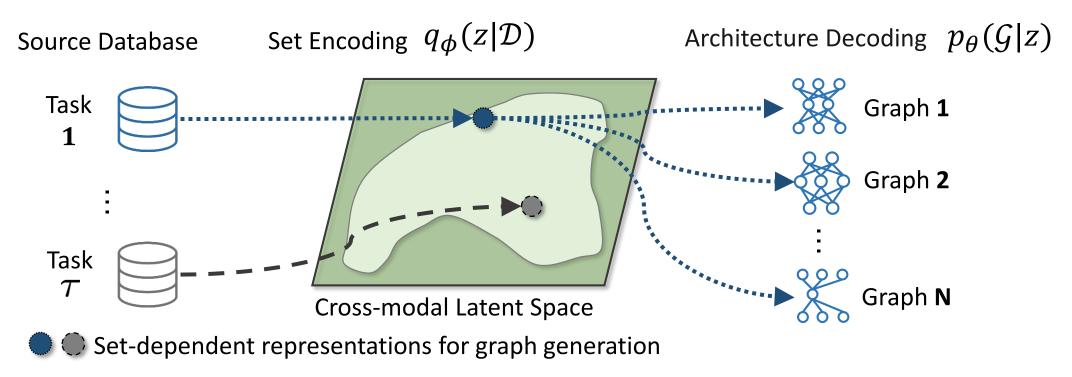
MetaD2A learns a cross-modal latent space of datasets and architectures via amortized meta-learning on source database.



For a novel dataset, we generalize amortized meta-knowledge of the cross-modal latent space to search for an architecture.

Learning to Generate Graphs from Datasets

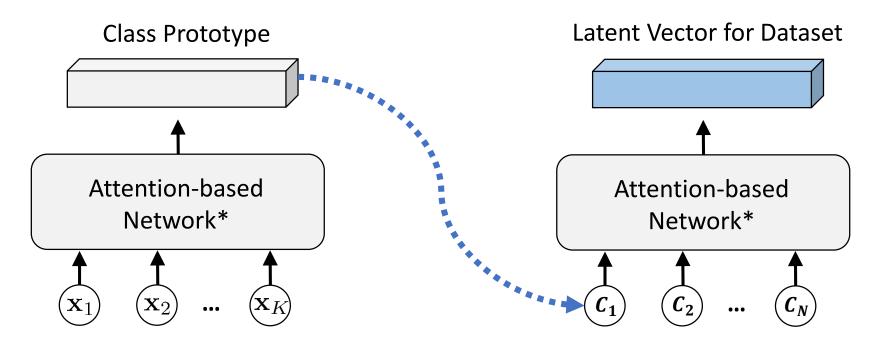
The set-to-architecture generator encodes datasets as **set-dependent** representations for **graph generation** and stochastically decodes it as graphs (architectures).



$$\text{Objective:} \quad \max_{\phi,\theta} \sum_{\tau \sim p(\tau)} \mathcal{L}_{\phi,\theta}^{\tau}(\mathcal{D},\mathcal{G}) = \max_{\phi,\theta} \sum_{\tau \sim p(\tau)} \mathbb{E}_{z \sim q_{\phi}(z|\mathcal{D})}[\log p_{\theta}(\mathcal{G}|z)] - \lambda \cdot L_{KL}^{T} \big[q_{\phi}(z|\mathcal{D}) || p(z) \big]$$

Hierarchical Set Encoder

We introduce a novel set encoder which is **permutation-invariant** with attention-based learnable parameters.

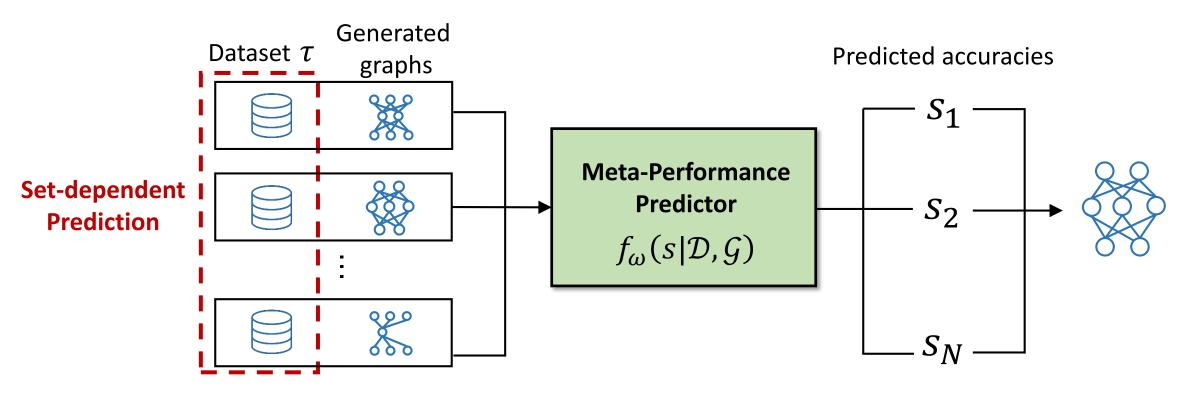


It can capture both the class prototypes that reflect label information and the high-level inter-class relationship between class prototypes.

^{*[}SetTransformer] Lee, J., et al. Set transformer: A framework for attention-based permutation-invariant neural networks. ICML 2019.

Meta-Performance Predictor

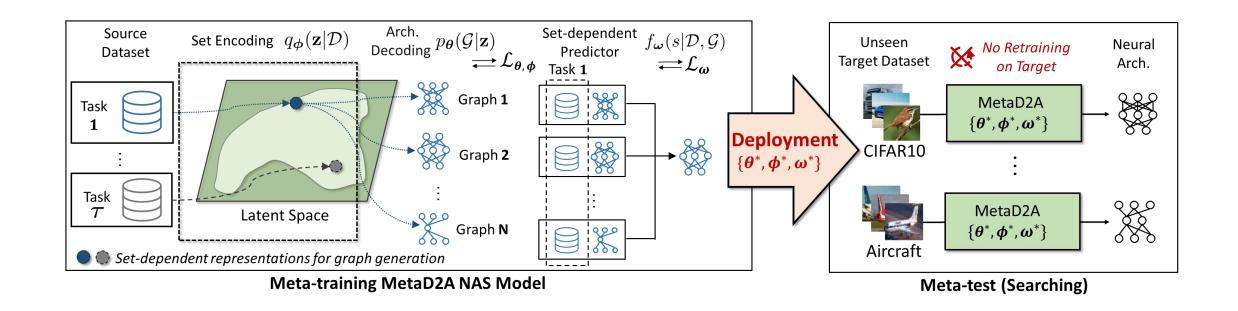
While the existing performance predictor takes a graph only, the proposed metaperformance predictor takes a **dataset** as well as graph to **support multiple datasets**.



Objective:
$$\min_{\omega} \sum_{\tau \sim p(\tau)} \mathcal{L}^{\tau}_{\omega}(s, \mathcal{D}, \mathcal{G}) = \sum_{\tau \sim p(\tau)} (s - f_{\omega}(\mathcal{D}, \mathcal{G})^2)$$

Overview of MetaD2A Framework

In the meta-test (searching) phase, we can **deploy** the meta-learned MetaD2A to output **set-specialized** neural architecture for new target datasets without additional training.



Performance on Unseen Datasets (Meta-Test)

Without direct NAS model training on target datasets, our model meta-learned on the source database can successfully **generalize** to 6 **unseen datasets**.

Meta-training	Subsets of ImageNet-1K and Architectures of NAS-Bench-201						
Meta-test	CIFAR-10	CIFAR-100	MNIST	SVHN	Aircraft	Oxford-IIIT Pets	
ResNet	93.97	70.86	99.67	96.13	47.01	25.58	
SETN	87.64	59.09	99.69	96.02	44.84	25.17	
GDAS	93.61	70.70	99.64	95.57	53.52	24.02	
PC-DARTS	93.66	66.64	99.66	95.40	26.33	25.31	
DrNAS	94.36	73.51	99.59	96.30	46.08	26.73	
MetaD2A (Ours)	94.37	73.51	99.71	96.34	58.43	41.50	

MetaD2A clearly outperforms baseline NAS models on multiple unseen datasets.

Search Time (GPU sec) on Unseen Datasets

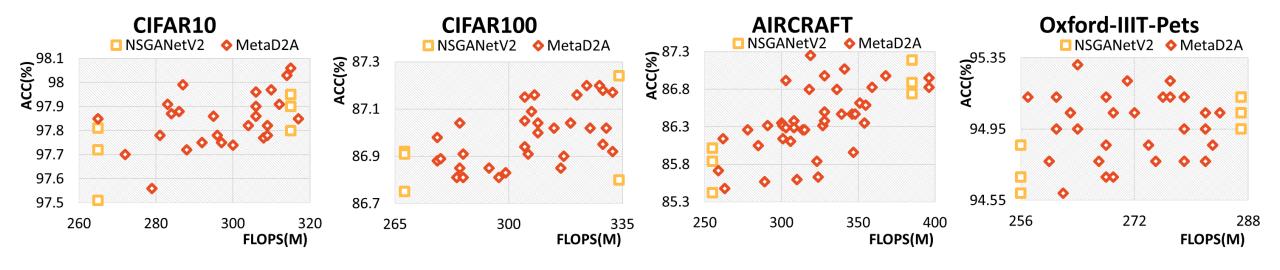
The search time of MetaD2A on unseen datasets is within 33 GPU seconds on average with a single 2080ti GPU.

Meta-training	Subsets of ImageNet-1K and Architectures of NAS-Bench-201							
Meta-test	CIFAR-10	CIFAR-100	MNIST	SVHN	Aircraft	Oxford-IIIT Pets		
RSPS	10200	18841	22457	27962	18697	3360		
SETN	30200	58808	9950	85189	18564	8625		
GDAS	25077	51580	60186	71595	18508	6965		
PC-DARTS	10395	19951	24857	31124	3524	2844		
DrNAS	21760	34529	44131	52791	34529	6019		
MetaD2A (Ours)	69	96	7	7	10	8		

This supports realistic scenarios that users with lack of computing resource get architectures suitable for their own datasets rapidly by using MetaD2A.

Evaluation in MobileNetV3 Search Space

MetaD2A reduces search time **5,523 times** on average while showing competitive performance compared with transfer NAS (NSGANetV2) on MobileNetV3 search space.



Summary

- We propose an efficient NAS framework (MetaD2A) which **rapidly** searches for a neural architecture on a **new dataset**.
- To this end, we propose to learn a **cross-modal latent space** of datasets and architectures by **amortized meta-learning** of it on subsets of ImageNet 1K.
- The meta-learned our model successfully **generalizes** to search for architectures on **unseen** datasets and shows rapid search time on them.