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Probabilistic Regression as a Multi-task Learning Problem
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Neural network (NN)-based multi-task learning architecture
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The Neural Process!

Neural network (NN)-based multi-task learning architecture
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1. Infer latent representation p(z|D¢) of the target function from D€ = {(x,f,y,f)},’:lzl
a. Map each context tuple (x5,ys) onto a latent observation r, = enci(xs, yr)

N
b. Form an aggregated latent observation 7 using mean aggregation: F = % > ra

c. Map F onto the parameters of the latent distribution: (u.,02) = enca(F)
2. Map samples z ~ p(2|D) onto a Gaussian output distribution: (u,,07) = dec(z, x")
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Context Aggregation and Task Ambiguity

» Different areas in the (x,y)-space can have
different task ambiguity (TA)
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‘ How to efficiently incorporate task ambiguity into NP parameter inference?
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Context aggregation and parameter inference should be treated as one holistic mechanism!
Directly aggregate the context data into the statistical description of z!
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» Context aggregation as Bayesian inference
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Context aggregation as Bayesian inference
Observation model: p(ra|z) =N (ry| z,diag (o2 ))
Encoder learns: (ry,02) =enc(x5,y5)
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Context aggregation as Bayesian inference
Observation model: p(ra|z) =N (ry| z,diag (o2 ))
Encoder learns: (ry,02) =enc(x5,y5)
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» Context aggregation as Bayesian inference

> Observation model: p(ra|z) =N (ra|z,diag(c?))
» Encoder learns: (rp,02) = enc (x5, ys)

» Latent posterior: p(z|{r,}) = N(z| pz,diag(c2))

N Nk N2
o2 = [Z (gfn) ] . Hz= Y —=1n (for each latent dim.)
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> r, enters p, with learned weight o2/0?

» Principled quantification of task ambiguity
» Only marginal computational overhead

» Compatible with existing NP architectures

ICLR 2021 | M. Volpp, F. Fltrenbrock, L. Grossberger, C. Daniel, G. Neumann, Bayesian Context Aggregation for Neural Processes
D e B ey, e ot Bovesion, Coniext Agareaation o T BOSCH



Experiments

PB/det. VI MC
BA MA (CNP) BA MA (LP-NP) BA MA
RBF GP 1.37+0.15 0.94 £ 0.04 1.40 +£0.04 0.45+0.12 1.62 +0.05 1.07 +0.05
Weakly Periodic GP | 1.13+0.08 0.76 £ 0.02 0.89 +0.03 0.07+£0.14 1.30+0.06 0.85 + 0.04
Matern-5/2 GP -0.50+0.07 -0.68+0.01 | -0.79+0.01 -1.09+0.10 | -0.33+0.01 -0.90+0.15
Furuta Dynamics 7.50 +0.27 7.06 £0.12 7.32+0.18 5.57+0.21 8.25+0.33 7.55+0.24
‘Weakly Periodic Matern 5/2
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