

DINO: A Conditional Energy-Based GAN for Domain Translation

Konstantinos Vougioukas, Stavros Petridis & Maja Pantic

- Domain translation should:
 - 1. Synthesize realistic data
 - 2. Maintain sample correspondence
- Adversarial training produces realistic results but can struggle to enforce correspondence.
- GAN-based translation systems often require:
 - Perceptual Losses
 - Reconstruction Losses (i.e., L1/L2)

- The discrimination in cGANs **may** ignore the condition-sample correspondence.
- Predicting the condition ensures that the condition driving the generation can be recovered from samples.
- Predictive conditioning enforces condition-sample correspondence.

Conditioning Mechanisms

Dual Inverse Network Optimization

- Bidirectional training means both networks are treated as discriminator and generator.
- Training simultaneously for both objectives causes **instability** so training is decoupled. The encoder **is trained only for discrimination** and the decoder uses **different heads for generation and discrimination**.

Image-to-Image Translation

Model	PESQ ↑	STOI↑	MCD↓	WER↓
Cond. WaveGAN	0.96	0.37	43.7	81.7%
CycleGAN	1.01	0.29	28.3	88.6%
Perceptual + GAN	1.24	0.45	24.3	40.5%
DINO	1.21	0.51	23.0	32.6%

