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 Domain translation should:

1. Synthesize realistic data
2. Maintain sample correspondence

 Adversarial training produces realistic results
but can struggle to enforce correspondence.

« GAN-Dbased translation systems often require:
« Perceptual Losses
* Reconstruction Losses (i.e., L1/L2)
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» The discrimination in cGANs may ignore
the condition-sample correspondence.

 Predicting the condition ensures that the
condition driving the generation can be
recovered from samples.

 Predictive conditioning enforces
condition-sample correspondence.
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minmax V(R,F) = ||R(y) — x|| — ||R(F(x)) — x||
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Bidirectional Translation
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« Bidirectional training means both networks are treated as discriminator and generator.

« Training simultaneously for both objectives causes instability so training is decoupled. The encoder is
trained only for discrimination and the decoder uses different heads for generation and discrimination.
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Model PESQ? | STOIt | MCD| | WER|
Cond. WaveGAN 0.96 0.37 43.7 81.7%
CycleGAN 1.01 029 | 283 | 88.6%
Perceptual + GAN | 1.24 045 | 243 | 40.5%
DINO 121 051 | 230 (fz.e%j
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@ https://github.com/DinoMan/DINO




