Shape or Texture: Understanding Discriminative Features in CNNs

Geirhos et al. (ICLR 2019)

Texture Image

Shape

Texture-Shape Cue Conflict

ResNet50 **81.4%** In

81.4% Indian elephant

71.1% Tabby cat

63.9% Indian elephant

e-Biased ResNet50

53.2% Tabby cat

50.6% Tabby cat

Class Label: Bird

Stylized Image

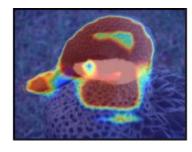
"Shape biased models make predictions based on the object's shape"

Class Label: Bird

Stylized Image

Segmentation GT

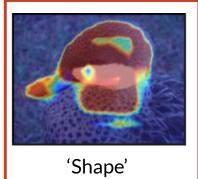
"Shape biased models make predictions based on the object's shape"


Class Label: Bird

Segmentation GT

'Shape'

"Shape biased models make predictions based on the object's shape"


Class Label: Bird

Stylized Image

Segmentation GT

"Shape biased models make predictions based on the object's shape"

How much shape information do CNNs encode?

Problem:

Lack of metrics for shape and texture information!

Network Dissection

Bau et al. (CVPR 2017)

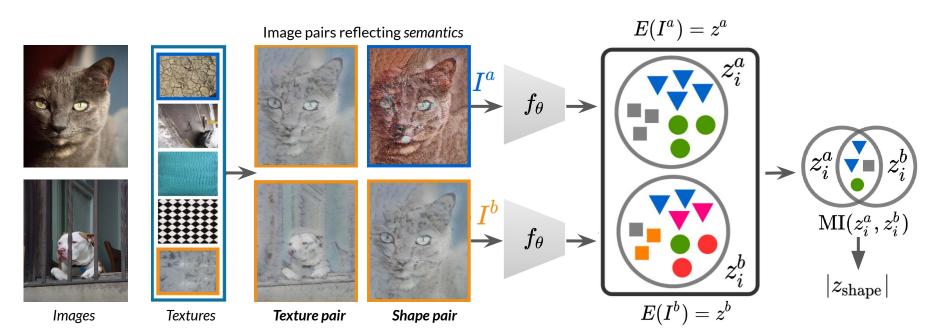
Based on semantic segmentation ground truth

'Shape' segmentation maps do not exist Unable to measure shape neurons

Shape Bias

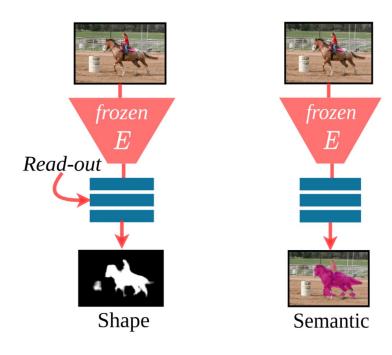
Geirhos et al. (ICLR 2019)

Measures accuracy of Shape-texture cue conflict images


Lacks ability to measure shape on a per-pixel level

Our Solution

Two new metrics for measuring shape information



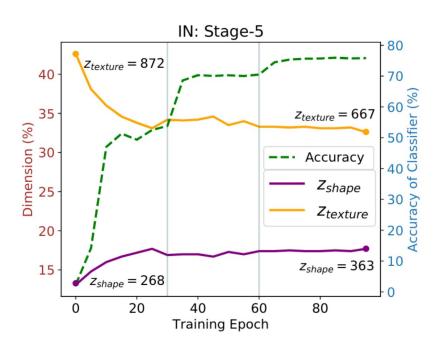
Method 1 - Estimating the number of shape encoding neurons

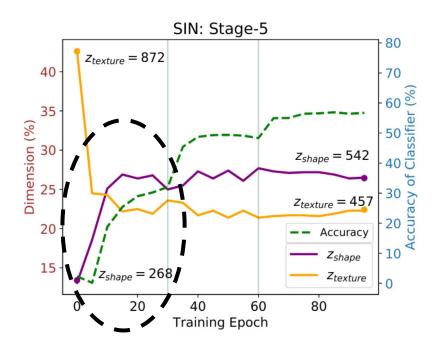
$$\operatorname{MI}(z_i^a, z_i^b) \geq -\frac{1}{2} \log(1 - \rho_i^2), \quad ext{where } \rho_i = \frac{\operatorname{Cov}(z_i^a, z_i^b)}{\sqrt{\operatorname{Var}(z_i^a) \operatorname{Var}(z_i^b)}}.$$

Method 2 - Decoding Per-Pixel Shape from A Pre-Trained Network

Estimating Shape & Texture Dimensionality

Model	Shape	Texture
ResNet50	349	692
BagNet33	/284	825
BagNet9	276,	841


All models trained on ImageNet


Estimating Shape & Texture Dimensionality

Dataset*	Shape	Texture
ImageNet (IN)	349	692
Stylized ImageNet (SIN)	/ 536	477
IN + SIN	376,	640

Models trained on datasets are ResNet50s*

When Does Shape Become Relevant During Training?

Quantifying Shape Information in CNN Latent Representation

Training Initialization	Bin.	Semantic
IN	79.8	61.6
SIN	76.4	53.7
IN+SIN	77.8	58.0

Quantifying Shape Information in CNN Latent Representation

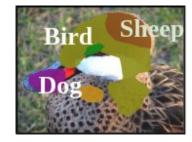
Training Initialization	Bin.	Semantic
IN	79.8	61.6
SIN	76.4	53.7
IN+SIN	77.8	58.0

Where is Shape Information Stored?

		Shape	Texture
Stage2	IN	14.1	40.2
(f2)	SIN	14.1	42.6
Stage5	IN	17.0	33.8
(f5)	SIN	26.2	23.3

Where is Shape Information Stored?

		Shape	Texture
Ctoss?	IN	14.1	40.2
Stage2 (f2)	SIN	14.1	42.6
Stage5	IN	17.0	33.8
(f5)	SIN	26.2	23.3


Conclusion

Introduced **two** new methods for quantifying shape information in the latent representations of neural networks in terms of **Neurons and Pixels**

1) Shape is learned early during training

2) Shape-Biased models do not encode global object shape

3) Shape-Bias -> effects last feature encoding stage

SHAPE OR TEXTURE: UNDERSTANDING DISCRIMINATIVE FEATURES IN CNNs

Poster Session 5, May 04

¹Department of Computer Science, Ryerson University, Canada

²University of Waterloo, Canada

³IWR, HCI, Heidelberg University, Germany

⁴School of Computer Science, University of Guelph, Canada

⁵Samsung AI Centre Toronto, Canada

⁶Vector Institute for AI, Canada