
Are Neural Nets Modular?
Inspecting Functional Modularity Through Differentiable Weight Masks

Róbert Csordás, Sjoerd van Steenkiste, Jürgen Schmidhuber

ICLR 2021

Start with pre-trained weights on the full task

Inspection via Differentiable Weight Masking

Illustration. We use multi-layer networks and do weight-level analysis.

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

Start with pre-trained weights on the full task

Inspection via Differentiable Weight Masking

Illustration. We use multi-layer networks and do weight-level analysis.

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

Start with pre-trained weights on the full task

Inspection via Differentiable Weight Masking

Illustration. We use multi-layer networks and do weight-level analysis.

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

*

Train binary weight masks on a subtask

Inspection via Differentiable Weight Masking

*

Illustration. We use multi-layer networks and do weight-level analysis.

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

Start with pre-trained weights on the full task

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

Train binary weight masks on a subtask

Inspection via Differentiable Weight Masking

Illustration. We use multi-layer networks and do weight-level analysis.

**

Start with pre-trained weights on the full task

Same is done for all subtasks of interest

Inspection via Differentiable Weight Masking

Task *

Shared (* and +)

Task +

Unused

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

12+45 = 57
42*2 = 84
75+85 = 60
43*25 = 75

...

+
*

a
b
c

(a+b)*c M
a
b
c

(a+b)*c

Are neural networks modular?

?

● Pspecialize: Different modules for separate functions

+
*

a
b
c

(a+b)*c M
a
b
c

(a+b)*c M
M

a
b
c

(a+b)*c

Compositionality and modularity

● Pspecialize: Different modules for separate functions

+
*

a
b
c

(a+b)*c M
a
b
c

(a+b)*c

+

*
a
b

a*b
*

a
b

a*b

● Preuse: Use the same module for identical functions

M
M

a
b
c

(a+b)*c

+
*

Compositionality and modularity

Analysis Pspecialize: Different modules for separate functions

n1 n2 op=*

n1 * n2

Input vector:

Output vector:

Expectation

n1 n2 op=+

n1 + n2

Task *

Shared (* and +)

Task +

Unused

Analysis

What we found:

n1 n2 op=*

n1 * n2

Input vector:

Output vector:

n1 n2 op=+

n1 + n2

Pspecialize: Different modules for separate functions

IoMin

IoU

Analysis Preuse: Use the same module for identical functions

n1 n2 0 0

n1 + n2 --

Input vector:

Output vector:

0 0 n3 n4

-- n3 + n4

Task 1 (n1+n2)

Shared

Task 2 (n3+n4)

Unused

Expectation

Analysis Preuse: Use the same module for identical functions

What we found

n1 n2 0 0

n1 + n2 --

Input vector:

Output vector:

0 0 n3 n4

-- n3 + n4

Task 1 (n1+n2)

Shared

Task 2 (n3+n4)

UnusedIoMinIoU

Analysis Preuse: Use the same module for identical functions

Confirmation: invert masks

Task 1 (n1+n2)

Task 2 (n3+n4)

Unused

Analysis Preuse: Use the same module for identical functions

Confirmation: invert masks

Task 1 (n1+n2)

Task 2 (n3+n4)

Removed

= ¬ = ¬
¬ Task 2

¬ Task 1

& Unused

Analysis Preuse: Use the same module for identical functions

Confirmation: invert masks

Task 1 (n1+n2)

Task 2 (n3+n4)

Removed

= ¬ = ¬
¬ Task 2

¬ Task 1

&

Task 1 (n1+n2)

Task 2 (n3+n4)

Mask:Task:

Unused

Analysis Preuse: Use the same module for identical functions

● We also test the effect on sequentially training to classify new permutations of MNIST.

T0 T1 T2

Analysis Preuse: Use the same module for identical functions

● We also test the effect on sequentially training to classify new permutations of MNIST.
● Layers are not reused, even though re-learning the first layer is enough.

Proportion of shared weights

Analysis - summary

Preuse: Use the same module for identical functions

Pspecialize: Different modules for separate functions

Analyzing generalization: SCAN

Trained: i.i.d
● Train set
● Jump test
● Length test

All networks have the same, frozen weights

Analyzing generalization: SCAN

Trained: i.i.d
● Train set
● Jump test
● Length test

Trained: jump train
● Train set
● Jump test

Trained: length train
● Train set
● Length test

Responsible for complex JUMP Responsible for longer samples

All networks have the same, frozen weights

Analyzing generalization: SCAN

**

Length test

Length test

Weights are
unchanged

Analyzing generalization: SCAN

Task-specific weights are responsible for solving different splits,
even after successfully trained on the i.i.d data

Percentage of weights per output token removed from last layer when trained on Add Jump split

Mathematics Dataset: Similar results

Task-specific weights are responsible for solving different splits,
even after successfully trained on the i.i.d data

No mask Mask trained on IID data Mask trained on “easy” set

Sharing in CNNs (CIFAR 10)
Classification depends heavily on unshared features, which, when removed, cause a huge drop in
performace.

Simple CNN w/ dropout Simple CNN w/o dropout ResNet 110

Sharing in CNNs (CIFAR 10)

Concluding remarks
● We proposed a masking based method for discovering subnetworks

responsible for specific functions

● Analyze properties of discovered modules a
b
c

(a+b)*c+
*

● We found that modules tend to resist sharing

● Generalization issues on SCAN and Mathematics Dataset is a
result of learning a non-universal, pattern recognition-like solution.

