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Start with pre-trained weights on the full task

Inspection via Differentiable Weight Masking

Illustration. We use multi-layer networks and do weight-level analysis.
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Same is done for all subtasks of interest

Inspection via Differentiable Weight Masking
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● Pspecialize: Different modules for separate functions
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Analysis Pspecialize: Different modules for separate functions
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Analysis

What we found:
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Pspecialize: Different modules for separate functions
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Analysis Preuse: Use the same module for identical functions
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Analysis Preuse: Use the same module for identical functions
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Analysis Preuse: Use the same module for identical functions

● We also test the effect on sequentially training to classify new permutations of MNIST. 

T0 T1 T2



Analysis Preuse: Use the same module for identical functions

● We also test the effect on sequentially training to classify new permutations of MNIST. 
● Layers are not reused, even though re-learning the first layer is enough.

Proportion of shared weights



Analysis - summary

Preuse: Use the same module for identical functions

Pspecialize: Different modules for separate functions



Analyzing generalization: SCAN

Trained: i.i.d
● Train set
● Jump test
● Length test

All networks have the same, frozen weights
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Trained: jump train
● Train set
● Jump test

Trained: length train
● Train set
● Length test

Responsible for complex JUMP Responsible for longer samples

All networks have the same, frozen weights



Analyzing generalization: SCAN

**

Length test

Length test

Weights are 
unchanged



Analyzing generalization: SCAN

Task-specific weights are responsible for solving different splits,
even after successfully trained on the i.i.d data

Percentage of weights per output token removed from last layer when trained on Add Jump split



Mathematics Dataset: Similar results

Task-specific weights are responsible for solving different splits,
even after successfully trained on the i.i.d data

No mask Mask trained on IID data Mask trained on “easy” set



Sharing in CNNs (CIFAR 10)
Classification depends heavily on unshared features, which, when removed, cause a huge drop in 
performace.

Simple CNN w/ dropout Simple CNN w/o dropout ResNet 110



Sharing in CNNs (CIFAR 10)



Concluding remarks
● We proposed a masking based method for discovering subnetworks 

responsible for specific functions

● Analyze properties of discovered modules a
b
c

(a+b)*c+
*

● We found that modules tend to resist sharing

● Generalization issues on SCAN and Mathematics Dataset is a 
result of learning a non-universal, pattern recognition-like solution.


