

Are Neural Nets Modular?

Inspecting Functional Modularity Through Differentiable Weight Masks

Róbert Csordás, Sjoerd van Steenkiste, Jürgen Schmidhuber

Start with pre-trained weights on the full task

Start with pre-trained weights on the full task

Start with pre-trained weights on the full task

$$12+45 = 57$$
 $42*2 = 84$
 $75+85 = 60$
 $43*25 = 75$

Start with pre-trained weights on the full task

12+45 = 57 42*2 = 84 75+85 = 60 43*25 = 75

$$12+45 = 57$$

$$42*2 = 84$$

$$75+85 = 60$$

$$43*25 = 75$$

Start with pre-trained weights on the full task

12+45 = 57 42*2 = 84 75+85 = 60 43*25 = 75 ...

Train binary weight masks on a subtask

Same is done for all subtasks of interest

Are neural networks modular?

Compositionality and modularity

• P_{specialize}: Different modules for separate functions

Compositionality and modularity

• P_{specialize}: Different modules for separate functions

P_{reuse}: Use the same module for identical functions

P_{specialize}: Different modules for separate functions

Input vector:

$$n_1 n_2 op=*$$

 $n_1 n_2 op=+$

Output vector:

$$n_1 + n_2$$

Expectation

P_{specialize}: Different modules for separate functions

Input vector:

$$n_1 n_2 op=*$$

 $n_1 n_2 op=+$

Output vector:

What we found:

P_{reuse}: Use the same module for identical functions

Input vector:

 $n_1 \quad n_2 \quad 0 \quad 0$ $n_1 + n_2 \quad --$

Output vector:

Expectation

P_{reuse}: Use the same module for identical functions

P_{reuse}: Use the same module for identical functions

Confirmation: invert masks

P_{reuse}: Use the same module for identical functions

Confirmation: invert masks

P_{reuse}: Use the same module for identical functions

Confirmation: invert masks

P_{reuse}: Use the same module for identical functions

• We also test the effect on sequentially training to classify new permutations of MNIST.

P_{reuse}: Use the same module for identical functions

- We also test the effect on sequentially training to classify new permutations of MNIST.
- Layers are not reused, even though re-learning the first layer is enough.

Analysis - summary

P_{specialize}: Different modules for separate functions

P_{reuse}: Use the same module for identical functions

All networks have the **same**, frozen weights

Trained: i.i.d

- Train set
 - Jump test
- Length test

All networks have the **same**, frozen weights

Trained: i.i.d

- Train set
- Jump test
- Length test

Trained: jump train

- Train set
- Jump test

- Length test

Responsible for longer samples

Responsible for complex JUMP

Percentage of weights per output token removed from last layer when trained on Add Jump split

Task-specific weights are responsible for solving different splits, even after successfully trained on the i.i.d data

Mathematics Dataset: Similar results

Task-specific weights are responsible for solving different splits, even after successfully trained on the i.i.d data

Sharing in CNNs (CIFAR 10)

Classification depends heavily on unshared features, which, when removed, cause a huge drop in performace.

Sharing in CNNs (CIFAR 10)

Concluding remarks

 We proposed a masking based method for discovering subnetworks responsible for specific functions

We found that modules tend to resist sharing

 Generalization issues on SCAN and Mathematics Dataset is a result of learning a non-universal, pattern recognition-like solution.

