The Intrinsic Dimensionality of Images and its Impact on Learning

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, Tom Goldstein

Learning problem that require exponential sample complexity in manifold dimension

Learning general boolean functions on the d-hypercube (need ALL 2^d vertices)

Learning a smooth class boundary on a manifold to ε-accuracy (Narayanan & Niyogi, COLT 2009)

Learning a manifold with bounded extrinsic curvature to ε-accuracy (Narayanan & Mitter, NeurIPS 2010)

AND...YET

We "solved" ImageNet Learning a smooth function in high dimensions

GANs Learning a "manifold"

StyleGAN, Karras 2018

QUESTIONS

Can we explicitly measure the lowdimensional structure of image manifolds?

Just how low-dimensional are they?

What is the impact of dimension on learning?

DIMENSIONALITY ESTIMATION

Maximum Likelihood Estimation (Levina & Bickel, NeurIPS '04)

 $T_k(x)$ = "Distance from point x to kth NN"

Local Estimate:

$$\hat{m}_k(x) = \left[\frac{1}{k-1} \sum_{j=1}^{k-1} \log \frac{T_k(x)}{T_j(x)}\right]^{-1}$$

We compute the average estimator over all data samples We use the de-biasing update from MacKay & Ghahramani '05

CAN WE APPLY THIS TO IMAGE DATA?

CAN WE ESTIMATE DIMENSIONALITY IN IMAGE DATA?

CAN WE ESTIMATE DIMENSIONALITY IN IMAGE DATA?

 $\bar{d} = 8$

 $\bar{d} = 32$

 $\bar{d} = 64$

 $\bar{d} = 128$

MLE estimates for 10dimensional Basenji's

A harder problem: 32-dimensional tree frogs

Higher dimensions is tougher!

32-dimensional tree frogs

Intrinsic Dimensionality of Common Datasets

(MLE estimates)

Intrinsic Dimensionality of Common Datasets

(**k=10** MLE estimates)

IMPACT OF DIMENSIONALITY ON LEARNING

Effect of INTRINSIC dimensionality on ResNet-18

Basenji vs Beagle

Effect of EXTRINSIC dimensionality on ResNet-18

Basenji vs Beagle

SUMMARY

- We measured the intrinsic dimensionality of common image datasets.
- We performed a novel large-scale validation of these measurements on GAN generated image data.
- We present novel empirical evidence that the intrinsic but not extrinsic dimension of image datasets matters for generalization with deep networks.

SUMMARY

More experiments in the paper!

Code available at https://github.com/ppope/dimensions