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Learning problem that require exponential

sample complexity in manifold dimension
1

. i
Learning general boolean

functions on the d-hypercube
(need ALL 2¢ vertices)

Learning a smooth class boundary on a
manifold to e-accuracy

(Narayanan & Niyogi, COLT 2009)

"

Learning a manifold with bounded
extrinsic curvature to €-accuracy

(Narayanan & Mitter, NeurlPS 2010)



AND...YET

We ‘“solved”

ImageNet
Learning a smooth function in

high dimensions

GANSs
Learning a “manifold”

StyleGAN, Karras 2018



QUESTIONS

Can we explicitly measure the low-
dimensional structure of image manifolds!?

Just how low-dimensional are they!?

What is the impact of dimension on learning?



DIMENSIONALITY ESTIMATION

Maximum Likelihood Estimation (Levina & Bickel, NeurlPS ‘04)

T.(r) = “Distance from point x to k' NN”

Local Estimate:

mE(Z) = |35 > log T

We compute the average estimator over all data samples

We use the de-biasing update from MacKay & Ghahramani 05



CAN WE APPLY THIS TO
IMAGE DATA!



CAN WE ESTIMATE DIMENSIONALITY
IN IMAGE DATA!?

Random Vector BigGAN Basenji

|28 dims Brock, 2018
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CAN WE ESTIMATE DIMENSIONALITY
IN IMAGE DATA!?

Random Vector BigGAN Basenji

|28 dims Brock, 2018







MLE estimates for |0-
dimensional Basenji’s
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A harder problem: 32-dimensional tree
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Dimensionality Estimate
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Higher dimensions is tougher!

32-dimensional tree frogs
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Dimensionality Estimate
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Intrinsic Dimensionality
of Common Datasets

(MLE estimates)
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Dimensionality Estimate
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Intrinsic Dimensionality

of Common Datasets
(k=10 MLE estimates)
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IMPACT OF DIMENSIONALITY ON
LEARNING



Effect of INTRINSIC dimensionality on ResNet-
18

Baseniji vs Beagle
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Effect of EXTRINSIC dimensionality on
ResNet-18

Basenji vs Beagle

lw.O‘ ...................... ._"_ L L — WL L L e e e
97.5
g 95.0
Z
O 92.5¢
=
? 90.0 — 3x16x16
A A P
87.5 Ix32x32
-« 3x64x64
85.0 ¢ 3x128x128
2000 4000 6000 8000 10000

Number of Training Samples




SUMMARY

® We measured the intrinsic dimensionality of common image
datasets.

® We performed a novel large-scale validation of these
measurements on GAN generated image data.

® We present novel empirical evidence that the intrinsic but
not extrinsic dimension of image datasets matters for
generalization with deep networks.



SUMMARY

More experiments in the paper!

Code available at
https://github.com/ppope/dimensions



https://github.com/ppope/dimensions

