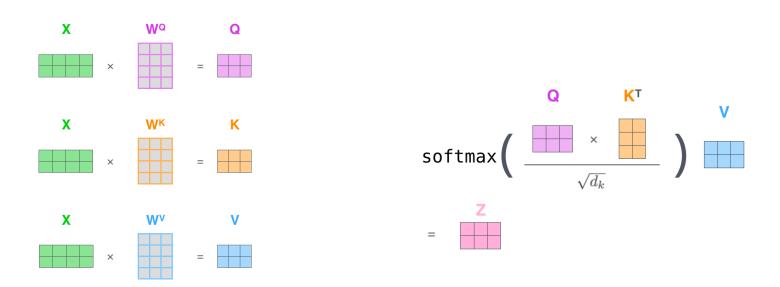


On Position Embeddings in BERT

Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu, Jakob Grue Simonsen

University of Padua, Huawei Noah's Ark Lab, University of Copenhagen

Transformer



Z = FFN(MHA(FFN(MHA(x))))

Encoding word features

how to encode features, e.g. Word, Position, Segment?

$$X = WE + PE + SE + ?$$

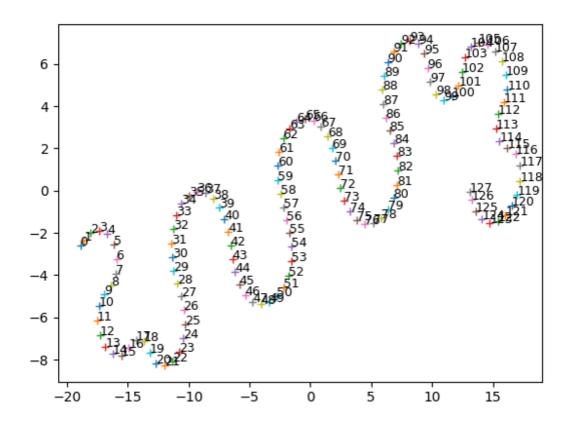
how to encode sequential feature?

$$PE'_{2k}(\cdot, pos) = \sin(pos/10000^{2k/d_{model}})$$

$$PE'_{2k+1}(\cdot, pos) = \cos(pos/10000^{2k/d_{model}})$$

how to better encode sequential feature? [Vaswani et.al and Wang et.al]

Fully-learnable PE (after T-SNE)



It seems that there are some clear patterns !!!

Some assumed properties

(to be examined)

Monotonicity: neighboring positions are embedded closer than faraway ones; e.g, 1 is closer to 2 than 3, 4...

Translation invariance: distances of two arbitrary m-offset position vectors are identical; distance(1,2) = distance(2,3)

Symmetry: the metric (distance) itself is symmetric. Especially no further info could be provided.

distance(1,2) = distance(2,1)

To understand sinusoidal APE

$$A_{x,y} = \langle \vec{x}, \vec{y} \rangle = \operatorname{sum} \left(\begin{bmatrix} \sin(\omega_1 x) \\ \cos(\omega_1 x) \\ \vdots \\ \sin(\omega_{\frac{D}{2}} x) \\ \cos(\omega_{\frac{D}{2}} x) \end{bmatrix} \odot \begin{bmatrix} \sin(\omega_1 y) \\ \cos(\omega_1 y) \\ \vdots \\ \sin(\omega_{\frac{D}{2}} y) \\ \cos(\omega_{\frac{D}{2}} y) \end{bmatrix} \right) = \operatorname{sum} \left(\begin{bmatrix} \sin(\omega_1 x) \sin(\omega_1 y) \\ \cos(\omega_1 x) \cos(\omega_1 y) \\ \vdots \\ \sin(\omega_{\frac{D}{2}} x) \sin(\omega_{\frac{D}{2}} y) \\ \cos(\omega_{\frac{D}{2}} x) \cos(\omega_{\frac{D}{2}} y) \end{bmatrix} \right) = \sum_{i=0}^{\frac{D}{2}} \cos(\omega_i (x-y))$$

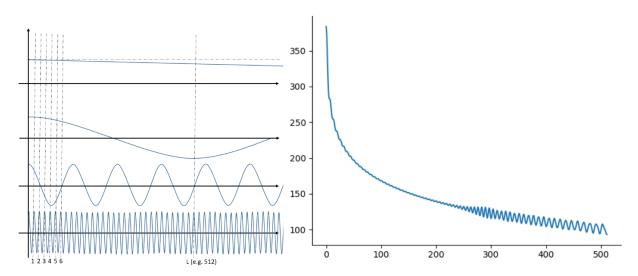
It satisfies translation invariance and symmetry

For monotonicity, we need to check its first order derivative

$$\sum_{i=1}^{D/2} -\omega_i \sin(\omega_i m)$$

To understand frequencies

$$A_{x,y} = \langle \vec{x}, \vec{y} \rangle = \operatorname{sum} \left(\begin{bmatrix} \sin(\omega_1 x) \\ \cos(\omega_1 x) \\ \vdots \\ \sin(\omega_{\frac{D}{2}} x) \\ \cos(\omega_{\frac{D}{2}} x) \end{bmatrix} \odot \begin{bmatrix} \sin(\omega_1 y) \\ \cos(\omega_1 y) \\ \vdots \\ \sin(\omega_{\frac{D}{2}} y) \\ \cos(\omega_{\frac{D}{2}} y) \end{bmatrix} \right) = \operatorname{sum} \left(\begin{bmatrix} \sin(\omega_1 x) \sin(\omega_1 y) \\ \cos(\omega_1 x) \cos(\omega_1 y) \\ \vdots \\ \sin(\omega_{\frac{D}{2}} x) \sin(\omega_{\frac{D}{2}} y) \\ \cos(\omega_{\frac{D}{2}} x) \cos(\omega_{\frac{D}{2}} y) \end{bmatrix} \right) = \sum_{i=0}^{\frac{D}{2}} \cos(\omega_i (x-y))$$



(a) Examples of some cosine functions

(b) $\phi(m)$, a sum of cosine functions with frequencies $\omega_i = (1/10000)^{2i/D}$.

For RPE

- Since It directly parameterize relative distance, it by definition satisfies translation invariance
- P(-m) is different with p(+m), it does not satisfy symmetry

Existing PEs

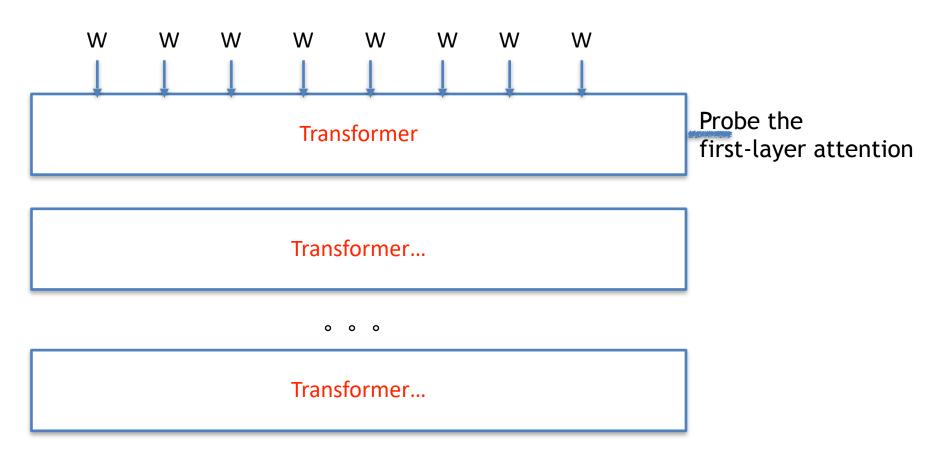
PEs	formulation	parameter scale
fully learnable APE (Gehring et al., 2017)	$P_x \in \mathbb{R}^D$	$L \times D$
fixed sinusoidal APE (Vaswani et al., 2017)	$P(x) = [\cdots, \sin(\omega_i x), \cos(\omega_i x), \cdots]^T;$ $\omega_i = (1/10000)^{2i/D}$	0
learnable sinusoidal APE	$P(x) = [\cdots, \sin(\omega_i x), \cos(\omega_i x) \cdots]^T;$ $\omega_i \in \mathbb{R}$	$\frac{D}{2}$
fully learnable RPE (Shaw et al., 2018)	$P_x \in \mathbb{R}^D$	$L \times D$
fixed sinusoidal RPE (Wei et al., 2019)	$P(x) = [\cdots, \sin(\omega_i x), \cos(\omega_i x), \cdots]^T;$ $\omega_i = (1/10000)^{2i/D}$	0
learnable sinusoidal RPE	$P(x) = [\cdots, \sin(\omega_i x), \cos(\omega_i x), \cdots]^T;$ $\omega_i \in \mathbb{R}$	L

Be either fully-learnable or functional parameterised

Pre-training setting

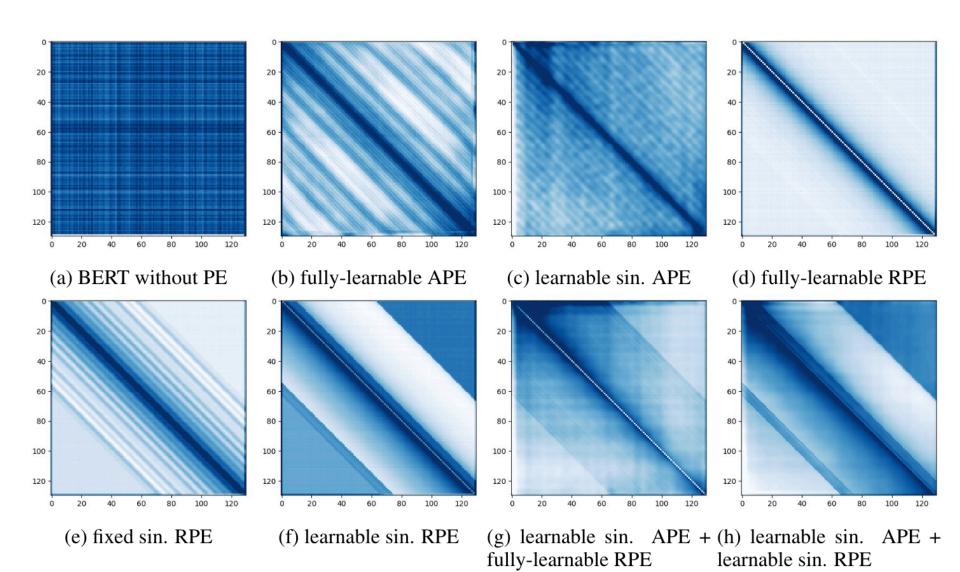
- Replace the PE component and train with 5 more epochs (128 length) and 2 more epoch (512 length)
 - Dataset: wiki and books (16G raw text)
 - Task: Mask word prediction and next word prediction

Probing test



Take the attention weights in the first layers

Probing test



Probing test

PEs	mon all offsets	otonicity first 20 offsets	translation w/ [CLS]	invariance w/o [CLS]	symmetry	direction balance
BERT without PE	0.5430	0.1393	0.9497	0.9939	0.0005	1.0136
BERT-style APE	0.2461	0.0208	0.5030	0.0143	0.0012	1.1940
fixed sin. APE	0.1937	0.0190	0.2552	0.2143	0.0010	1.0266
learnable sin. APE	0.1936	0.0237	0.0653	0.0378	0.0004	1.0281
fully-learnable RPE	0.1576	0.0048	0.1178	0.0007	0.0007	1.1930
fixed sin. RPE	0.1273	0.0054	0.0924	0.0020	0.0007	1.1565
learnable sin. RPE	0.3157	0.0057	0.1397	0.0038	0.0014	1.3223
BERT-style APE + fully-learnable RPE	0.1993	0.0071	0.2601	0.0059	0.0009	1.1971
BERT-style APE + fixed sin. RPE	0.1579	0.0143	0.1376	0.0072	0.0007	1.1302
BERT-style APE+ learnable sin. RPE	0.2364	0.0158	0.2334	0.0088	0.0014	1.3804
learnable sin. APE + fully-learnable RPE	0.1248	0.0065	0.0487	0.0238	0.0007	1.1196
learnable sin. APE + fixed sin. RPE	0.0746	0.0040	0.0243	0.0168	0.0007	1.0773
learnable sin. APE + learnable sin. RPE	0.1796	0.0052	0.0399	0.0252	0.0027	1.6722

The bigger, the more it violates the properties (monotonicity, translation invariance and symmetry)

Applications

- Document-level classifications (GLUE)
 - Use [CLS] for prediction

- Token-level classifications (SQuAD)
 - Use each token for prediction

GLUE requires that PEs can flexibly deal with CLS and normal positions

Downstream tasks - GLUE

	single sentence				sentence pair					
PEs	CoLA	SST-2	MNLI	MRPC	QNLI	QQP	RTE	STS-B	WNLI	
	acc	acc	acc	F1	acc	F1	acc	spear. cor.	acc	mean \pm std
BERT without PE	39.0	86.5	80.1	86.2	83.7	86.5	63.0	87.4	33.8	76.6 ± 0.41
fully learnable (BERT-style) APE	60.2	93.0	84.8	89.4	88.7	87.8	65.1	88.6	37.5	82.2 ± 0.30
fixed sin. APE	57.1	92.6	84.3	89.0	88.1	87.5	58.4	86.9	45.1	80.5 ± 0.71
learnable sin. APE	56.0	92.8	84.8	88.7	88.5	87.7	59.1	87.0	40.8	80.6 ± 0.29
fully-learnable RPE	58.9	92.6	84.9	90.5	88.9	88.1	60.8	88.6	50.4	81.7 ± 0.31
fixed sin. RPE	60.4	92.2	84.8	89.5	88.8	88.0	62.9	88.1	45.1	81.8 ± 0.53
learnable sin. RPE	60.3	92.6	85.2	90.3	89.1	88.1	63.5	88.3	49.9	82.2 ± 0.40
fully learnable APE + fully-learnable RPE	59.8	92.8	85.1	89.6	88.6	87.8	62.5	88.3	51.5	81.8 ± 0.17
fully learnable APE + fixed sin. RPE	59.2	92.4	84.8	89.9	88.8	87.9	61.0	88.3	48.2	81.5 ± 0.20
fully learnable APE+ learnable sin. RPE	61.1	92.8	85.2	90.5	89.5	87.9	65.1	88.2	49.6	82.5 ± 0.44
learnable sin. APE + fully-learnable RPE	57.2	92.7	84.8	88.9	88.5	87.8	58.6	88.0	51.3	80.8 ± 0.44
learnable sin. APE + fixed sin. RPE	57.6	92.6	84.5	88.8	88.6	87.6	63.1	87.4	48.7	81.3 ± 0.43
learnable sin. APE + learnable sin. RPE	57.7	92.7	85.0	89.6	88.7	87.8	62.3	87.5	50.1	81.4 ± 0.33

The fully-learnable PE performs well, not PE variants significantly outperform it

Downstream tasks - SQuADs

DE-	SQuA	D V1.1	SQuAD V2.0			
PEs	F1	EM	F1	EM		
BERT without PE	36.47 ± 0.19	24.24 ± 0.33	50.48 ± 0.12	49.30 ± 0.14		
fully learnable (BERT-style) APE	89.44 ± 0.08	81.92 ± 0.11	76.43 ± 0.63	73.07 ± 0.63		
fixed sin. APE	89.45 ± 0.07	81.93 ± 0.11	76.12 ± 0.48	72.75 ± 0.55		
learnable sin. APE	$89.65^{\dagger} \pm 0.11$	$82.24^{\dagger} \pm 0.17$	77.24 ± 0.43	73.93 ± 0.44		
fully-learnable RPE	$90.50^{\dagger} \pm 0.08$	83.38 ± 0.11	$79.85^{\dagger} \pm 0.27$	$76.68^{\dagger} \pm 0.49$		
fixed sin. RPE	$90.30^{\dagger} \pm 0.07$	83.24 ± 0.08	$78.76^{\dagger} \pm 0.29$	$75.38^{\dagger} \pm 0.28$		
learnable sin. RPE	$90.45^{\dagger} \pm 0.11$	$83.49 ^{\dagger} \pm 0.14$	$79.40^{\dagger} \pm 0.37$	$76.14^{\dagger} \pm 0.33$		
fully learnable APE + fully-learnable RPE	$90.57^{\dagger} \pm 0.04$	83.45 † \pm 0.10	$80.31^{\dagger} \pm 0.10$	$76.94^{\dagger} \pm 0.20$		
fully learnable APE + fixed sin. RPE	$90.24^{\dagger} \pm 0.17$	83.06 ± 0.21	$78.74^{\dagger} \pm 0.50$	$75.40^{\dagger} \pm 0.52$		
fully learnable APE+ learnable sin. RPE	89.56 ± 0.28	82.26 ± 0.30	$77.82^{\dagger} \pm 0.42$	$74.51^{\dagger} \pm 0.39$		
learnable sin. APE + fully-learnable RPE	$90.72^{\dagger} \pm 0.13$	83.68 † \pm 0.27	$80.24^{+} \pm 0.35^{-}$	76.98 † \pm 0.34		
learnable sin. APE + fixed sin. RPE	$90.36^{\dagger} \pm 0.08$	83.25 ± 0.10	$78.81^{\dagger} \pm 0.33$	$75.71^{\dagger} \pm 0.28$		
learnable sin. APE + learnable sin. RPE	$90.49^{\dagger} \pm 0.14$	$83.59~^\dagger~\pm~0.14$	$79.93^{\dagger} \pm 0.34$	$76.69^{\dagger} \pm 0.39$		

RPEs and sin. APEs perform better than the fully learnable PE

Tips of PEs

- Untile [CLS] and PEs for document-level classification
- Use RPE for token-level classification

Correlations between properties and performance

Properties		CoLA	SST-2	MNLI	QQP	GLUE	SQuAD V1.1	SQuAD V2.0
monotonicity	all offsets	0.44	0.43	0.56	0.32	0.48	-0.31	-0.27
	first 20 offsets	-0.18	0.44	-0.24	-0.42	-0.21	-0.91	-0.86
translation invariance	w/[CLS]/[SEP]	0.48	0.52	0.04	-0.07	0.42	-0.63	-0.57
	w/o [CLS]/[SEP]	-0.47	0.01	-0.69	-0.68	-0.61	-0.51	-0.58
symmetry		0.17	0.24	0.40	0.09	0.31	0.15	0.16
direction balance		0.32	0.16	0.63	0.35	0.48	0.32	0.37

violating local monotonicity and translation invariance is harmful, while violating symmetry (and direction-balance) is beneficial

- Thanks
- We will further post a blog to explain more details of position embeddings, very soon