

IN DEFENSE OF PSEUDO-LABELING: AN UNCERTAINTY-AWARE PSEUDO-LABEL SELECTION FRAMEWORK FOR SEMI-SUPERVISED LEARNING

Mamshad Nayeem Rizve

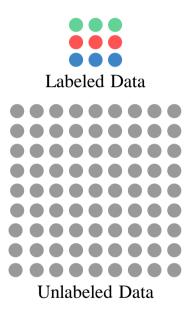
Kevin Duarte

Yogesh S Rawat

Mubarak Shah

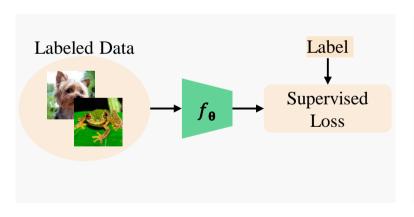
Semi-Supervised Learning

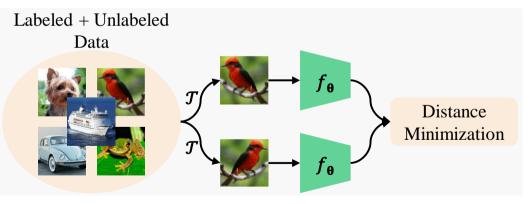
- Supervised learning relies on large labeled datasets
- Constructing large labeled datasets
 - expensive
 - time-consuming
- SSL leverages
 - o a small amount of labeled data
 - o a large amount of unlabeled data concurrently
- One of the fundamental problems in machine learning



Dominant SSL Approaches

- Consistency Regularization [1, 2, 3]
 - obtain perturbation/augmentation invariant output distribution
 - o rely on domain-specific heavy data augmentation
 - o limited applicability on domains which do not have a rich set of augmentations



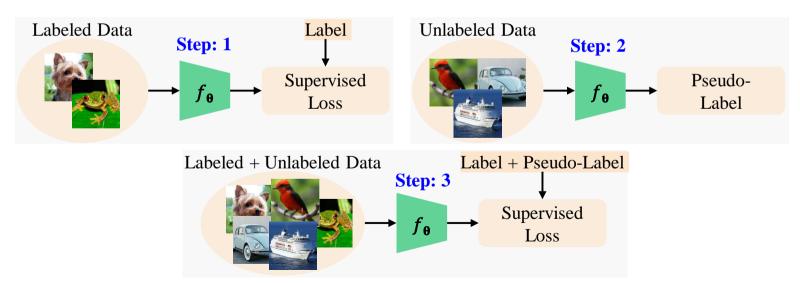


- 1. Regularization with stochastic transformations and perturbations for deep semi-supervised learning; Sajjadi et al.; Neurips 2016
- 2. Interpolation consistency training for semi-supervised learning; Verma et al.; IJCAI 2019
- 3. Mixmatch: A holistic approach to semi-supervised learning; Berthelot et al.; Neurips 2019

Dominant SSL Approaches

Pseudo-Labeling [1]

- o generate pseudo-labels for unlabeled samples
- o does not require domain-specific data augmentation
- o performs poorly in comparison to consistency regularization



Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks; Lee; ICML Workshop 2013

Objective

Bridge the performance gap between

Pseudo-Labeling

and

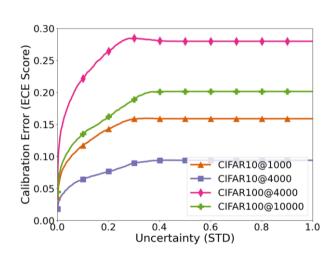
Consistency Regularization

Fundamental Issues with Pseudo-Labeling

- Training with small labeled set
 - leads to erroneous pseudo-label generation
 - o many incorrect pseudo-labels leads to noisy training
- Incorrect pseudo-labels must be discarded
 - use high-confidence pseudo-labels for training

Pseudo-Label Selection

- Using highly confident pseudo-labels is insufficient
 - o neural networks suffer from poor calibration [1]
 - o many incorrect pseudo-labels are still selected
- Another interpretation of calibration
 - o a notion of network's overall prediction uncertainty [2]
- We have empirically analyzed
 - the relationship between the calibration error and
 - o individual output prediction uncertainties

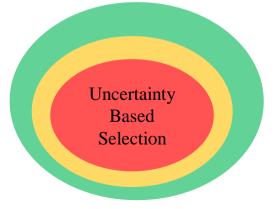


^{1.} On Calibration of Modern Neural Networks; Guo et al.; ICML 2017

^{2.} Simple and scalable predictive uncertainty estimation using deep ensembles; Lakshminarayanan et al.; Neurips 2017

Pseudo-Label Selection

- Based on our observations
 - we select a subset of generated pseudo-labels with the following two criteria
 - the confidence of a prediction has to be high
 - the network has to be certain about the output prediction
- We call this method Uncertainty-Aware Pseudo-Label Selection (UPS)

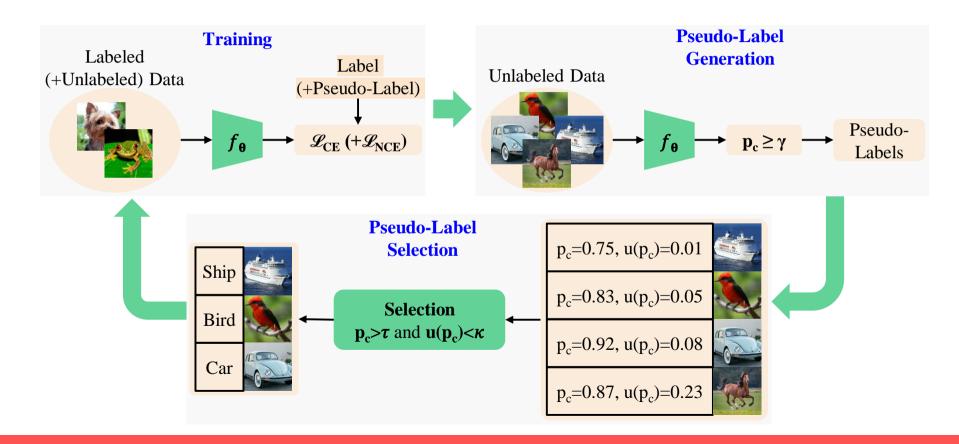


Pseudo-Label Selection

- Networks can be confident and certain about a class **not** being present
- We can use this information and select negative pseudo-labels
- This gives us two benefits:
 - o negative learning for single label classification
 - allows for multi-label classification

Horse	×
Dog	
Truck	×
Cat	

UPS Method



Results (CIFAR-10 and CIFAR-100)

Error rate (%) on the CIFAR-10 and CIFAR-100 test set:

Method CIFAR-10		R-10	CIFAR-100	
Method	1000 labels	4000 labels	4000 labels	10000 labels
DeepLP [†]	22.02 ± 0.88	12.69 ± 0.29	46.20 ± 0.76	38.43 ± 1.88
$TSSDL^\dagger$	21.13 ± 1.17	10.90 ± 0.23	-	-
MT	19.04 ± 0.51	11.41 ± 0.25	45.36 ± 0.49	36.08 ± 0.51
MT + DeepLP	16.93 ± 0.70	10.61 ± 0.28	43.73 ± 0.20	35.92 ± 0.47
ICT	15.48 ± 0.78	7.29 ± 0.02	-	-
DualStudent	14.17 ± 0.38	8.89 ± 0.09	-	32.77 ± 0.24
R2-D2	-	-	-	32.87 ± 0.51
MixMatch	-	6.84	-	-
UPS [†]	$\textbf{8.18} \pm \textbf{0.15}$	$\textbf{6.39} \pm \textbf{0.02}$	$\textbf{40.77} \pm \textbf{0.10}$	32.00 ± 0.49

Results (UCF-101 and Pascal VOC2007)

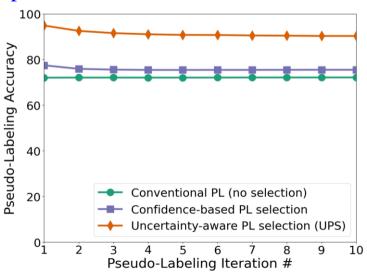
Method	20% labeled	50% labeled
Supervised	33.5	45.6
MT*	36.3	45.8
PL*	37.0	47.5
S4L*	37.7	47.9
UPS	39.4	50.2

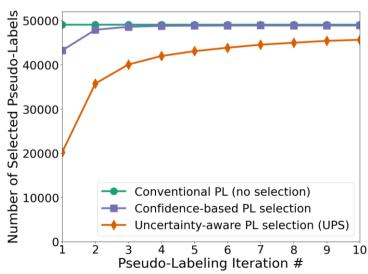
Accuracy (%) on the UCF-101 test set: mAP scores on the Pascal VOC2007 test set:

Method	10% labeled	20% labeled
Supervised	18.36 ± 0.65	28.84 ± 1.68
PL	27.44 ± 0.55	34.84 ± 1.88
MixMatch	29.57 ± 0.78	37.02 ± 0.97
MT	32.55 ± 1.48	39.62 ± 1.66
UPS	34.22 ± 0.79	$\textbf{40.34} \pm \textbf{0.08}$

Analysis (PL Accuracy)

UPS achieves higher pseudo-label accuracy while selecting similar number of pseudo-labels



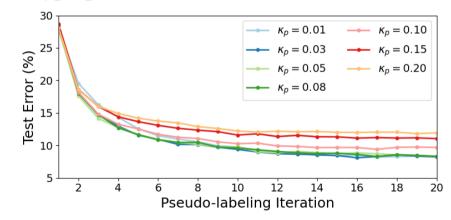


Analysis (Compatibility and Robustness)

UPS is compatible with most uncertainty estimation methods

Method	1000 labels	4000 labels
MC-Dropout	8.14	6.36
MC-SpatialDropout	8.28	6.60
MC-DropBlock	9.76	7.50
DataAug	8.28	6.72

UPS is robust to pseudo-label selection hyperparameters



Conclusion

- We have introduced UPS,
 - o a simple and efficient framework for effective pseudo-labeling based SSL
- UPS competes with SOTA consistency regularization based methods
 - without inherently relying on strong data augmentation
- We are first to propose negative pseudo-labeling for SSL
- UPS is versatile:
 - o it is domain agnostic
 - o can be easily used for multi-label classification

Thank You