Local Search Algorithms for Rank-Constrained Convex Optimization

Kyriakos Axiotis

Maxim Sviridenko

YAHOO!

The Problem

Matrix Completion

M: Data matrix
Ω: Set of observable entries
Find A that minimizes

$$\sum_{ij\in\Omega} \left(M_{ij} - A_{ij}\right)^2$$

subject to

 $\operatorname{rank}(\mathbf{A}) \leq r$

Rank-Constrained Convex Optimization

R: Convex function

Find **A** that minimizes

 $R(\mathbf{A})$

subject to

 $\operatorname{rank}(\mathbf{A}) \leq r$

Rank-Constrained Convex Optimization

R: Convex function

Find **A** that minimizes

 $R(\mathbf{A})$

subject to

 $\operatorname{rank}(\mathbf{A}) \leq r$

NP-hard problem

Usual: Replace rank(**A**) by $||A||_*$ (trace norm)

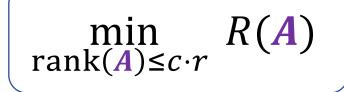
Here: Relax to rank(\mathbf{A}) $\leq c \cdot r$

Algorithms & Theoretical results

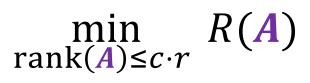
$\min_{\operatorname{rank}(A) \leq c \cdot r} R(A)$

A Greedy Algorithm (Shalev-Schwarz et al. (2011)) U = V = ()For $i = 1 \dots c \cdot r$ u, v = top singular vectors of $\nabla R(A)$

A Greedy Algorithm (Shalev-Schwarz et al. (2011)) U = V = ()For $i = 1 \dots c \cdot r$ u, v = top singular vectors of $\nabla R(A)$ $U = (U \quad u)$ $V^{\top} = (V^{\top} \quad v)$



```
A Greedy Algorithm (Shalev-Schwarz et al. (2011))
 \boldsymbol{U} = \boldsymbol{V} = ()
 For i = 1 \dots c \cdot r
           \boldsymbol{u}, \boldsymbol{v} = \text{top singular vectors of } \nabla R(\boldsymbol{A})
           \boldsymbol{U} = (\boldsymbol{U} \quad \boldsymbol{u})
            V^{\mathsf{T}} = (V^{\mathsf{T}} \quad v)
           X = \operatorname{argmin}_{X} R(UXV)
            U = UX
```

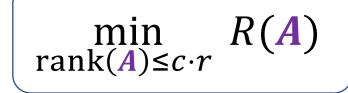


A Greedy Algorithm (Shalev-Schwarz et al. (2011)) $\boldsymbol{U} = \boldsymbol{V} = ()$ For $i = 1 \dots c \cdot r$ $\boldsymbol{u}, \boldsymbol{v} = \text{top singular vectors of } \nabla R(\boldsymbol{A})$ $\boldsymbol{U} = (\boldsymbol{U} \quad \boldsymbol{u})$ $V^{\mathsf{T}} = (V^{\mathsf{T}} \quad v)$ $X = \operatorname{argmin}_{X} R(UXV)$ U = UXReturn UV

(κ : condition number of R)

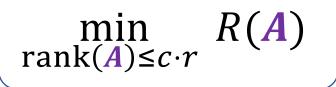
Known bound:
$$c \le O\left(\kappa \frac{R(\mathbf{0})}{\epsilon}\right)$$

Our bound: $c \le O\left(\kappa \log \frac{R(\mathbf{0})}{\epsilon}\right)$



A Faster Greedy Algorithm $\boldsymbol{U} = \boldsymbol{V} = ()$ For $i = 1 \dots c \cdot r$ $\boldsymbol{u}, \boldsymbol{v} = \text{top singular vectors of } \nabla R(\boldsymbol{A})$ $\boldsymbol{U} = (\boldsymbol{U} \quad \boldsymbol{u})$ $V^{\mathsf{T}} = (V^{\mathsf{T}} \quad v)$ $X = \operatorname{argmin}_{X} R(UXV)$ U = UX

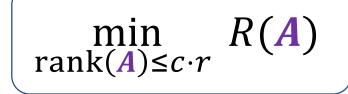
Return UV



A Faster Greedy Algorithm

$$U = V = ()$$

For $i = 1 \dots c \cdot r$
 $u, v = \text{top singular vectors of } \nabla R(A)$
 $U = (U \quad u)$
 $V^{\top} = (V^{\top} \quad v)$
If i is even: $V = \operatorname{argmin}_{V} R(UV^{\top})$
Else: $U = \operatorname{argmin}_{U} R(UV^{\top})$
Return UV $\leftarrow \Theta(c \cdot r)$ speedup in many cases



A Local Search Algorithm

After **inserting** new vectors, **remove** one set of vectors

$c \leq O(\kappa^2)$

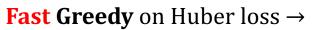
Experiments

FG-BG Separation using Robust PCA

M = L + S

input BG FG video (low-rank) (sparse)

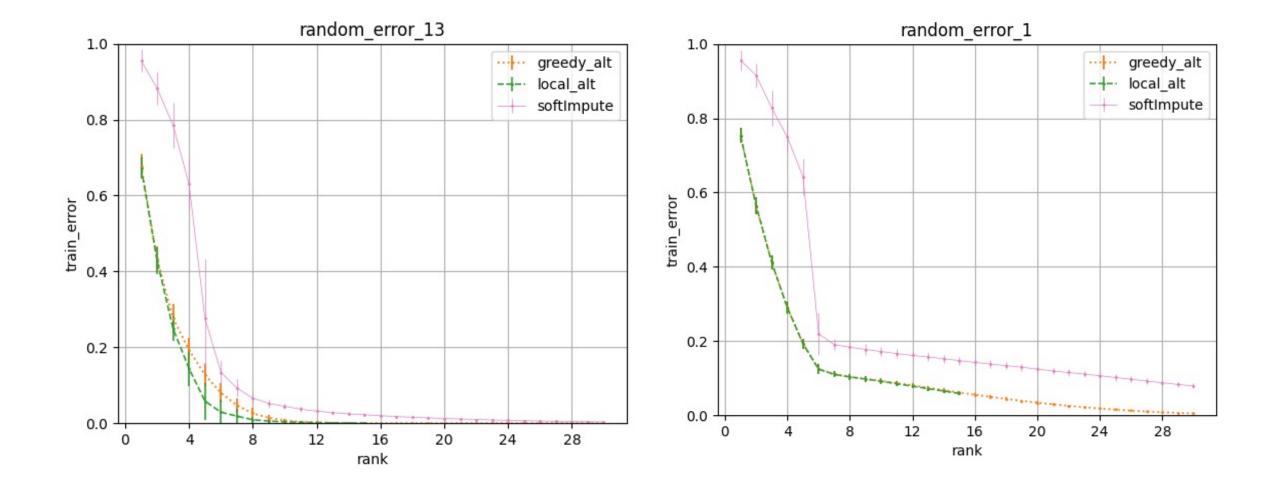
 $\min_{\substack{rank(L) \leq r}} \frac{Huber loss}{H_{\delta}(M-L)}$



original video ↓

Principal Component Pursuit (PCP)

Matrix Completion (Optimization Task)



Recommender Systems

(metric: relative ℓ_2^2 error)

Algorithm	MovieLens 100K	MovieLens 1M	MovieLens 10M
NMF (Lee & Seung (2001))	0.9659	0.9166	0.8960
SoftImpute	1.0106	0.9599	0.957
Alternating Minimization	0.9355	0.8732	0.8410
SVD (Koren et al. (2009))	0.9533	0.8743	0.8315
Fast Greedy (Algorithm 2.3)	0.9451	0.8714	0.8330

Conclusions

- New **efficient greedy** & **local search** algorithms for rankconstrained convex optimization
- Even though very **general**, on par with algorithms for specialized applications (e.g. robust PCA, recommender systems)

