Generative Scene Graph Networks
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Introduction

» Goal;
» Unsupervised scene graph discovery

* Motivation:
* Model part-whole relationships
* Discover modular primitives
» Help systematic generalization
* Improve data efficiency

PartNet objects (Mo et al., 2019)



Hierarchical Scene Representations

Previous Work This Work
* Need supervision  Fully unsupervised
» 3D supervision » 2D Image input
» Part-level supervision * No part labels
* Assume single object * Multi-object scenes

* Inference OR generation * Inference AND generation



Object-Centric Representations

» Unsupervised object-level decomposition
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Slot Attention (Locatello et al., 2020)



GSGN: Probabilistic Scene Graph

* Nodes: entity appearance
» Edges: relative pose for composition

Zy,
* Prior factorization:
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GSGN: Top-Down Inference

* First: scene — objects
* Then: object — parts
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» Use prior for guidance:
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GSGN: Compositional Decoder

» Recursive composition

 Coordinate transform
» Alpha compositing

Xy =) 0, ©ST (%, 20°)




Datasets
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Scene Graph Inference

Full scene Object 1 Object 2 Object 3 Object 4
Recon- Input Recon- Input Recon- Input Recon- Input Recon-
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Scene Graph Manipulation

* Object-level manipulation

» Part-level manipulation




Generation from Prior

* Object generation

» Scene generation
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Robustness to Occlusion

Severe occlusion Slight occlusion

Min Visible

Pixels Per Part <100 100~200 >200

Part Count Part Part Count Part Part Count Part

Metric Accuracy  Recall  Accuracy  Recall  Accuracy  Recall
SPACE-P 12.24% 36.03% 35.66% 97.95% 96.11% 99.48%
GSGN 95.92% 98.93% 98.33% 99.77% 98.76% 99.86%
GSGN-9 39.80% 97.35% 96.92% 97.85% 98.12% 97.62%
GSGN-No-Share 33.71% 96.34% 96.13% 99.15% 97.56% 99.46%




Data Efficiency in Downstream Tasks
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Conclusion

* Unsupervised scene graph discovery
from multi-object scenes

» Scene graph inference under severe occlusion
» Out-of-distribution generation
 Better data efficiency in downstream tasks



