Generative Scene Graph Networks

Fei Deng¹, Zhuo Zhi², Donghun Lee³, Sungjin Ahn¹

¹Rutgers University, ²University of California, San Diego, ³ETRI

Introduction

- Goal:
 - Unsupervised scene graph discovery
- Motivation:
 - Model part-whole relationships
 - Discover modular primitives
 - Help systematic generalization
 - Improve data efficiency

PartNet objects (Mo et al., 2019)

Hierarchical Scene Representations

Previous Work

- Need supervision
 - 3D supervision
 - Part-level supervision
- Assume single object
- Inference OR generation

This Work

- Fully unsupervised
 - 2D image input
 - No part labels
- Multi-object scenes
- Inference AND generation

Object-Centric Representations

Unsupervised object-level decomposition

SPACE (Lin et al., 2020)

ROOTS (Chen et al., 2020) Slot Attention (Locatello et al., 2020)

GSGN: Probabilistic Scene Graph

- Nodes: entity appearance
- Edges: relative pose for composition
- Prior factorization:

$$p(\mathbf{z}_{\mathrm{fg}}) = p(\mathbf{z}_{r}^{\mathrm{appr}}) \prod_{v} p(\mathbf{z}_{v}^{\mathrm{pose}} | \mathbf{z}_{pa(v)}^{\mathrm{appr}}) p(\mathbf{z}_{v}^{\mathrm{appr}})$$
root parent \rightarrow *chilo*

GSGN: Top-Down Inference

- First: scene \rightarrow objects
- Then: object \rightarrow parts

$$q(\mathbf{z}_{\mathrm{fg}} | \mathbf{x}) = q(\mathbf{z}_{r}^{\mathrm{appr}} | \mathbf{x}) \prod_{v} q(\mathbf{z}_{v}^{\mathrm{pose}}, \mathbf{z}_{v}^{\mathrm{appr}} | \mathbf{z}_{p}^{\mathrm{appr}} | \mathbf{z}_{p}^$$

• Use prior for guidance: $q(\mathbf{z}_{v}^{\text{appr}} | \mathbf{z}_{pa(v)}^{\text{appr}}, \mathbf{x}) \propto p(\mathbf{z}_{v}^{\text{appr}} | \mathbf{z}_{pa(v)}^{\text{appr}}) q_{\text{SPACE}}(\mathbf{z}_{v}^{\text{appr}} | \mathbf{x}_{v})$ *prior SPACE*

GSGN: Compositional Decoder

- Recursive composition
 - Coordinate transform
 - Alpha compositing

$$\hat{\mathbf{x}}_u = \sum \boldsymbol{\alpha}_v \odot \mathcal{ST}^{-1}(\hat{\mathbf{x}}_v, \, \mathbf{z}_v^{\text{pose}})$$

Datasets

2D Shapes

Compositional CLEVR

Scene Graph Inference

Object 2			Object 3				Object 4			
t x	Recon- struction	Parts		Input + bbox	Recon- struction	Parts	Input + bbox	Recon- struction	Parts	
•							802	-		
			•							

Scene Graph Manipulation

Object-level manipulation

Part-level manipulation

Generation from Prior

Object generation

Scene generation

Robustness to Occlusion

	Severe oc	clusion			Slight oc	clusion							
Min Visible Pixels Per Part	<10	0	$100 \sim 200$		>200								
Metric	Part Count	Part	Part Count	Part	Part Count	Part							
	Accuracy	Recall	Accuracy	Recall	Accuracy	Recall							
SPACE-P	12.24%	86.03%	85.66%	97.95%	96.11%	99.48%							
GSGN	95.92%	98.93%	98.33%	99.77%	98.76%	99.86%							
GSGN-9	89.80%	97.35%	96.92%	97.85%	98.12%	97.62%							
GSGN-No-Share	85.71%	96.34%	96.13%	99.15%	97.56%	99.46%							

Data Efficiency in Downstream Tasks

Training Samples

Conclusion

 Unsupervised scene graph discovery from multi-object scenes

- Scene graph inference under severe occlusion
- Out-of-distribution generation
- Better data efficiency in downstream tasks